
Arithmetic Coding Modification to Compress SMS
Ario Yudo Husodo

#1
, Rinaldi Munir

*2

#*Informatics Department, School of Electrical Engineering and Informatics, Institut Teknologi Bandung

Jalan Ganesha 10 Bandung

if17017@students.if.itb.ac.id

rinaldi@informatika.org

Abstract— This paper proposes an effective method to compress

SMS by doing some modifications to arithmetic coding data

compression mechanism. The aim of this proposal is to optimize

the maximum character capacity of SMS body. Every character

in SMS is mostly encoded in 7 bit and the maximum capacity of

one SMS is only 1120 bit. Those SMS characteristics require a

very efficient compression method to compress SMS.

Arithmetic coding is a compression mechanism that works by

converting a data message to a real code number between 0 and 1.

Arithmetic coding provides nearly optimal data compression.

However, it requires additional memory space in compressed-

data to save arithmetic coding probability table for

decompressing the compressed-data. Besides, it requires high-

precision and effective encoder-decoder to calculate and

represent its code number (compressed-data).

In very limited data space like SMS, the need of additional

memory space to save arithmetic coding probability table is

inefficient. It will make the compressed-SMS size bigger than the

original SMS (uncompressed SMS) size. To overcome this

inefficiency, in this paper, the need of memory space is erased.

This paper proposes semi dynamic probability table usage to

compress and decompress SMS for overcoming the inefficient

need of memory space. To more optimize the effectiveness and

efficiency of proposed-method compression ratio, this paper also

proposes a smart data representation to represent code number

so that the number of bits needed to represent compressed-SMS

can be well-minimized. By using this smart data representation,

2k digit decimal code number value in base-10 can be written by

only using k default GSM 7 bit characters.

The proposed compression mechanism in this paper has been

researched plainly in mobile phone that uses Android operating

system. The SMS data test language used on the research is

Bahasa Indonesia. Based on the research, the compression ratio

of proposed compression mechanism is vary depends on the

content of SMS. The average compression ratio of proposed

compression mechanism is 71%, while the maximum

compression ratio is able to reach less than 25%, i.e. 500

character SMS can be compressed to 121 character SMS.

Keywords — arithmetic coding, modification, SMS, compression.

I. INTRODUCTION

A. Arithmetic Coding

Arithmetic coding is a compression mechanism that works

by converting a data message to a real code number between 0
and 1 [1]. To compress a data, arithmetic coding requires a

probability table of characters contained in the data.

Probability table is a table containing probability range of

existing characters in a data which is built based on the

existing characters frequency in the data itself. The smaller the

range to generate code number, the higher bit number is

needed to represent the code number [2]. Arithmetic coding

only needs usual arithmetic operation to compress and
decompress a message. On arithmetic coding, compression

encoding is not done to every single character but it is done

straight to the message itself. Basically, arithmetic coding is

able to compress a message with compressed-message result

near to the message entropy value.

There are two main weaknesses of arithmetic coding. The

first one is that it needs memory space in compressed-data to

save its range probability table for decompressing the

compressed-data. If arithmetic coding is used to compressed

small-size data, the existence of the range probability table in

compressed-data will make the compressed-data bigger in size
than the original data itself. The second weakness of

arithmetic coding is that it requires encoder-decoder with

high-precision value. Encoder is a machine to compress a

message; meanwhile decoder is a machine to decompress a

compressed-message. If encoder or decoder doesn‘t have

ability to calculate long mantissa with precision value, the

decompressed message of compressed-message can be

different from the original message.

B. Short Message Service (SMS)

Short Message Service (SMS) is a bi-directional

communication service to send a text message via wireless

communication system. The common SMS uses default GSM

7 bit alphabet encoding system. The maximum capacity of a

SMS is 1120 bits [3]. It means that it is only able to contain

maximum 160 standard characters encoded by default GSM 7

bit alphabet. Nowadays, there are three main encoding

systems for SMS: the default GSM 7-bit alphabet, the 8-bit

data alphabet, and the 16-bit UTF-16 alphabet. No matter the

encoding system used to encode SMS characters, the

maximum capacity of usual SMS is only 1120 bits.
There are two main parts of SMS, first is header, and

second is body. SMS header consists of instruction sets related

to components working on SMS service network, like receiver

destination number and date information about the time when

SMS is sent. In another hand, SMS body is a part of SMS

containing the main message that SMS sender want to send.

Because the part of SMS header must be readable by SMS

provider and because the most SMS encoding system

nowadays uses default GSM 7 bit alphabet, this paper will

only continue discussion on an efficient method to compress

mailto:if17017@students.if.itb.ac.id
mailto:rinaldi@informatika.org

SMS body that uses default GSM 7 bit alphabet. To facilitate

the easy call of proposed SMS compression mechanism in this

paper, the proposed mechanism is named with ACHA, stand

for Arithmetic Coding Hybrid Ario.

II. PROPOSED SMS COMPRESSION MECHANISM

In making an efficient method to compress SMS body, two

modification aspects of arithmetic coding are proposed in this

paper.

A. Semi Dynamic Probability Table Usage

Every compression mechanism needs conversion table to

compress and decompress a data. Usually, this conversion

table built based on the data message itself. In pure arithmetic

coding mechanism, the conversion table often called range

probability table. Because the range probability table adapts to

original data content, the range probability in arithmetic

coding is also often called with dynamic range probability

table. In arithmetic coding mechanism, to decompress a

compressed-message correctly (match with original message),

decoder needs the same range probability table used by
encoder when encoder compressing the original message. To

enable decoder having the same range probability table,

usually the range probability used by arithmetic coding

encoder is sent along with the compressed-data. Usually, the

range probability is included in the beginning of compressed-

data and it is called with compressed-data header.

For compressing a big-size data by using arithmetic coding

mechanism, the compressed-data header doesn‘t give any

significant difference of compressed-data size. But if the

original data size is small, the existence of the compressed-

data header can add very significant difference of compressed-

data size. It could enlarge the compression ratio of a data
message significantly. Compression ratio is a ratio between

compressed-data size compared to original-data size. The

smaller compression ratio of a compression mechanism, the

better performance of the compression mechanism is.

Because SMS body only have maximum capacity of 1120

bit characters, SMS can be categorized as a small-size data

message. It means that if SMS is compressed by using pure
arithmetic coding mechanism, addition of compressed-data

header is able to make the compressed-SMS size bigger than

the original-SMS size. To overcome this problem, the

existence of compressed-data header should be erased.

The most conventional way for erasing the existence of

compressed-data header is by using static range probability

table to compress any SMS body. It means that encoder and

decoder use one-fit-all table to compress and decompress any

kind of SMS body. This method is very simple but the

efficiency of arithmetic coding mechanism will be decreased

drastically. The decreased of arithmetic coding efficiency
occurs because the one-fit-all table also contains range

probability data of characters that do not exist in the original

SMS body. This data definitely decrease the table range to

generate code number, in another word, this data will increase

the bit number needed to represent the code number.

To overcome the weaknesses of dynamic and static range

probability table, this paper proposed-mechanism –ACHA–

proposes a semi-dynamic range probability table for

compressing and decompressing SMS. Semi dynamic range

probability table is a dynamic range probability table that is

built from some static range probability sub table. A static

range probability sub table consists of static characters

frequency that is predicted (based on probability and statistical
calculation) will appear in original SMS. Different from

conventional static range probability table, a static range

probability sub table doesn‘t contain data frequency of all

characters that possible to appear in original SMS, it only

contains data frequency of some characters that possible to

appear in original SMS. Data in a static range probability sub

table is a part of data in usual static range probability table.

In ACHA mechanism, data in conventional static range

probability table is divided to n ACHA static range probability

sub tables (the number of n will be discussed later). Every

single ACHA static range probability sub table contain
almost-equal number of data. Any single data contained in

ACHA static range probability sub table-j is never contained

in ACHA static range probability sub table-k, where j ≠ k. In

ACHA mechanism, the main range probability table for

compressing and decompressing SMS is built from the

suitable ACHA static range probability sub tables.

In ACHA mechanism, after encoder reads the whole SMS

body, encoder determines which ACHA sub tables (ACHA

static range probability sub tables) should be used to build

main range probability table. The configuration of ACHA sub

tables used by encoder to compress original data is written
only by using few characters (default GSM 7 bit character) –

these characters are called Conf_Char (configuration

character). After deciding the ACHA sub tables‘ configuration,

ACHA build the main range probability table then encoder

starts compression process just like common arithmetic-

coding compression mechanism. In the end of compression

process, encoder put the Conf_Char in the beginning of

compressed-data as a part of the compressed-SMS body.

When compressed-SMS received by decoder, decoder read

the Conf_Char, then decoder interprets the Conf_Char to build

main range probability table to decode the whole compressed-

SMS. After the main range probability table is built from
ACHA sub tables based on Conf_Char, decoder decompresses

the compressed-SMS just like common arithmetic-coding

decompression mechanism.

If there are n ACHA sub tables, then call each ACHA sub

tables T1, T2, .., and Tn. To build the main range probability

table, each ACHA sub tables only has two possibilities: to be

used as part of the main range probability table or not. Based

on that fact, for n ACHA sub tables, there are 2n possibilities

of sub table configuration used on building the main range

probability table. In ACHA mechanism, the configuration is

represented by efficient Conf_Char (The representation
process of Conf_Char will be discussed in section II.B).

Compression Ratio =

To more understand the ACHA sub table mechanism, take

a situation that we want to compress SMS in Bahasa Indonesia

with message ―ayah saya‖ (means ―my father‖ in English). To

simplify the calculation, assume we only have 16 recognized

letters in SMS: {<space>,a,d,e,f,g,h,i,j,m,o,s,y,z,1,2} with

conventional static data frequency of each characters is shown

in Table 1. Table 1 shows the simulated average probability of

each 16-character appearance number in 10,000 characters

contained in SMS. Take the number of ACHA sub tables is 4.

The four ACHA sub tables is Shown in Table 2, where each

sub tables data is sorted by the characters frequency. Table 3
shows the overall main range probability used to compress

message ―ayah saya‖.

TABLE I

SIMULATED AVERAGE PROBABILITY APPEARANCE NUMBER OF 16-

RECOGNIZED CHARACTER IN 10,000 CHARACTERS IN SMS

TABLE 2

ACHA SUB TABLES FOR TABLE 1

 Sub Table T1 Sub Table T2

Character Frequency

<space> 1500

a 1400

s 1000

d 900

 Sub Table T3 Sub Table T4

Character Frequency

m 600

h 500

o 500

y 400

TABLE 3

MAIN CHARACTER FREQUENCY TABLE FROM TABLE 2 TO COMPRESS

MESSAGE ―AYAH SAYA‖

From Table 3, to compress ―ayah saya‖, there are only two

ACHA sub tables used to compress the message: T1 and T3.

There is no character in T2 or T4 used in original message

―ayah saya‖, so T2 and T4 is not used to build the main

character frequency table (Table 3). Compared with Table 1

where there are 16 data frequency saved, Table 3 only saves 8

data frequency. It means that the usage of ACHA sub tables

eliminate significantly unused data frequency in main

probability table for compressing or decompressing data. By

implementing the ACHA semi-dynamic range probability

table usage, the range to generate code number in ACHA
mechanism will be bigger than the range in static range

probability method, thus the bit number needed to represent

the code number in ACHA will be more efficient than in static

range probability method. Table 4 shows the overall main

range probability table used to compress message ―ayah saya‖.

After the main range probability table –Table 4– built,

encoder starts compression process just like common

arithmetic-coding compression mechanism.

TABLE 4

MAIN RANGE PROBABILITY TABLE FROM TABLE 3 TO COMPRESS MESSAGE

―AYAH SAYA‖

Character Probability Range
Low

Range
High

Range

<space> 1500/6800 0.00 – 0.2206 0.00 0.2206

a 1400/6800 0.2206 – 0.4265 0.2206 0.4265

s 1000/6800 0.4265 – 0.5735 0.4265 0.5735

d 900/6800 0.5735 – 0.7058 0.5735 0.7058

m 600/6800 0.7058 – 0.794 0.7058 0.794

h 500/6800 0.794 – 0.8675 0.794 0.8675

o 500/6800 0.8675 – 0.941 0.8675 0.941

y 400/6800 0.941 – 1.00 0.941 1.00

B. Smart Compressed-Data Representation

In arithmetic coding mechanism, a data is converted to a

decimal code number. The longer the original message, the

more mantissa needed to represent the compressed-message is.

Primitive data structures such float or double practically is not

good to be used as the code number type. The reason is

because the both primitive data structures have limitation in

number of mantissa they saves, besides, the mantissa precision

they saved is not very precise.

The implementation target of ACHA mechanism is
Android-operating-system-base mobile phone. Because

Android use java programming language, to represent long

code number precisely, ACHA mechanism use BigDecimal

java class. The BigDecimal java class is a class that

theoretically can keep unlimited mantissa value of a decimal

number. Unfortunately, the decimal number represented by

BigDecimal java class is encoded as string. Because of the

limited number of bits contained in one SMS (1120 bits),

there is only short java string that can be saved in one SMS.

Character Frequency

<space> 1500

a 1400

s 1000

d 900

e 900

f 800

g 700

i 600

Character Frequency

m 600

h 500

o 500

y 400

1 50

j 50

2 50

z 50

Character Frequency

e 900

f 800

g 700

i 600

Character Frequency

1 50

j 50

2 50

z 50

Character Frequency

<space> 1500

a 1400

s 1000

d 900

m 600

h 500

o 500

y 400

To increase the number of BigDecimal code number value

that can be saved in one SMS, the BigDecimal code number

value should be represented more efficiently. In ACHA

mechanism, to represent the code number, ACHA introduce

base-100 number that can be encoded by using default GSM 7

bit alphabet. By the base-100 number introduced in ACHA,

every two number of mantissa in BigDecimal code number

will be converted to a base-100 number encoded in default

GSM 7 bit alphabet. In ACHA, the converted BigDecimal

code number is called with Encoded Code Number. For

example, if number 91 in base-10 number is represented with
Ü in base-100 number and number 23 in base-10 number is

represented with M in base-100 number, then BigDecimal

code number ―0.9123‖ can be written as ÜM in compressed

SMS. Note that either Ü or M can be encoded only by using 7

bits in default GSM 7-bit alphabet encoding system. By using

introduced base-100 number encoded in default GSM 7 bit

alphabet encoding system, ACHA mechanism can represent

2k digit mantissa of BigDecimal code number by only using k

default GSM 7-bit characters.

Introduced base-100 number is also used to represent

Conf_Char. Recall the discussion in section II.A, there are 2n

possible sub table configurations from n ACHA sub tables.

Base-100 number is able to be used to represent all those

possible configurations. The number of character needed to
represent Conf_Char depends on the number of ACHA sub

tables used. For example, if ACHA sub tables used are 6, then

there are 26 = 64 possible configurations. One base-100

Fig. 1 ACHA Overall Process Scheme

a) ACHA Compression Scheme

Scheme

b) ACHA Decompression Scheme

number (one Conf_Char) is enough to represent all those

possible configurations. Meanwhile, if ACHA sub tables used

are 8, then there are 28 = 256 possible configurations. Then it

means that it needs at least two base-100 numbers (two

Conf_Char) to represent all possible configurations. Because

of this smart compressed-data representation, ACHA

mechanism can represent any information of compressed-

SMS especially the code number very efficiently. Fig 1 shows

the overall process of ACHA mechanism.

III. RELATED WORK

ACHA compression mechanism is adapted from hybrid

compression mechanism using codebooks containing k static

codes used by IBM‗s ―Information Management System‖

(IMS) [2] –with some modified method elaboration. In IBM-

IMS, there are k static compression codes to compress a

particular character; meanwhile in ACHA there are n static

sub tables used to build main conversion table (range

probability table) to build compressed-data (code number).

While in IBM-IMS the compression-code has been statically

defined, in ACHA it is the sub table characters frequency that

is statically defined. The compression-code in ACHA is
always dynamic depends on the variety of characters in

original data. If the characters-variety in original data changes,

the ACHA sub tables needed to compress the original data

will probably change too, thus the main range probability

table will also change, as the result, the overall compression-

code will be different too.

IV. PROPOSED METHOD EFFECTIVENESS

In ACHA, the overall compressed-SMS is written using

standard default GSM 7-bit characters, it means that every

character written in compressed-SMS can be read correctly by
receiver phone (decoder), thus, there is no worry about

unreadable characters in receiver phone. In ACHA mechanism,

theoretically the more number of ACHA sub tables, the better

ACHA compression ratio is. It happens because when number

of ACHA sub tables increase, the number of unnecessary data

frequency in main range probability table can be decreased.

For example, if in Table 2 there are 16 sub tables (each sub

tables consists of one single data frequency), it means to

compress ―ayah saya‖ there is only 5 data saved in the main

range probability table. However, if the number of ACHA sub

tables used increases, the number of Conf_Char needed will

increase too. To find the best compression ratio of ACHA
mechanism, obviously the best number of ACHA sub table

used in ACHA mechanism must be found.

Because the proposed SMS-compression mechanism in

this paper is quite new to compress SMS, the research to find

the best number of ACHA sub table that should be used is still

under observation. Although the best compression ratio of the

proposed SMS-compression mechanism is still under

observation, the effectiveness of the proposed mechanism has

been tested well.

V. IMPLEMENTATION

To observe ACHA performance, the proposed mechanism

has been implemented in mobile phone using Android

operating system. The implementation has been done in

Samsung Galaxy Tab (processor Cortex A-8 1GHz and
512MB of RAM). Fig 2 shows the interface of application

implementing ACHA that is tested in Galaxy Tab.

VI. EXPERIMENTS AND RESULTS

The effectiveness of ACHA mechanism has been tested to

compress 150 diverse SMS using Bahasa Indonesia. So far,

the research has just tested the ACHA effectiveness using 19

ACHA sub tables to compress SMS using Bahasa Indonesia.

Theoretically, ACHA mechanism can be used to compress

any character in SMS effectively, however because the

research about ACHA mechanism is a new research, on the

research that has been done so far the variety of recognized

character in encoder is just set to 96. Those characters are

chosen based on the most 96 characters statistically used in

SMS using Bahasa Indonesia. Fig 3 shows the effectiveness of

ACHA mechanism compared to pure arithmetic coding that
use dynamic range probability table.

Fig 3 shows that the average compression ratio of tested

ACHA mechanism is about 71% (while the best ACHA

compression ratio can reach less than 25%). The difference

between ACHA average compression ratio and pure

arithmetic average compression ratio (without considering the

compressed-data header) is less than 6 %. Although ACHA

mechanism compression ratio is not better than the pure

arithmetic coding compression ratio (without compressed-data

header), but practically with the existence of compressed-data

header in pure arithmetic coding, the overall compression-

Fig. 2 ACHA Application Interface

<< This is the place where SMS

body inputted by user >>

<< This is the place where

compressed or decompressed SMS

result showed by ACHA >>

ratio of ACHA mechanism is proved to be better than pure

arithmetic coding compression ratio. For such a small-size

data like SMS, 71% compression ratio is a significant value.

VII. CONTRIBUTION TO SOCIETY

As told in the previous section, the research about ACHA

mechanism is still under observation. It means that the best

ACHA compression ratio to compress any recognized

characters in SMS possibly has not been found yet. A long

with the continuance of the research, the best ACHA

performance to compress SMS will be more revealed each

time. When the best ACHA performance to compress any

recognized characters in SMS is found, then there are two

main optimal contributions that ACHA can offer to society:

SMS bandwidth saving and possible-secured SMS data

protection.
By compressing SMS body, the number of bits needed to

represent the SMS body will be decreased. 200 characters that

usually encoded with 1400 bits (more than 1 SMS maximum

capacity) can be compressed to approximately 980 bits (less

than 1 SMS maximum capacity) by using ACHA mechanism.

Without being compressed, 200 characters SMS needs

bandwidth to send 2 SMS. While by being compressed, the

200 characters SMS only needs bandwidth to send 1 SMS.

This bandwidth saving obviously can be helpful for SMS

provider resource efficiency. By saving the usage of SMS

provider bandwidth, SMS provider service quality and the

number of SMS-service user that can be served by SMS
provider in a time will be increased.

Besides saving SMS bandwidth, ACHA can also be used as

a part of encryption mechanism to protect SMS body. Table 5

shows compressed-SMS format of ACHA. Table 5 shows that

the compressed-SMS practically can be treated as common

characters in SMS. By implementing any trivial encryption

method, for example Vigenere Cipher, the SMS body will be

well-protected because no data frequency analysis can be done

to crack the encrypted-data. Practically, other encryption

methods can also be implemented to encrypt ACHA

compressed-SMS. The main contribution of ACHA in

protecting SMS is that it decreases significantly the possibility

of data frequency analysis to crack encrypted-data.

TABLE 5

COMPRESSED-SMS EXAMPLE FROM ACHA COMPRESSION MECHANSIM

Original SMS Compressed-SMS Compression Ratio

Serpihan malam

bulan separuh,
jelang hari baru
pertanda tiba.
Kembang api
membuncah ke
angkasa sambut
tahun muda 2011.
Selamat tahun baru

2011 semoga lebih
baik dibanding
tahun sebelumnya.

pàogÜ*f3t_ck(;P2u

3ÜI/d1oU*PSVÇ!
OIl/E@lTÜT?2?Nt
7v_+OH
ùvä.Ürg'+tÜuugtüÅ
åÇäN9ùQGéHuM*
0v'B,/Hrv3&W>é3
bés¿k>w@vjbYwL,
5/>0XXCa6öky/1ö

v

68.62%

188 characters
(2 SMS)

129 characters
(1 SMS)

save 59 characters

When ACHA mechanism is tested in one of mobile phone

using Android Operating System, i.e. Galaxy Tab (processor

Cortex A-8 1GHz and 512MB of RAM), the ACHA

mechanism tested to work properly. Fig 2 shows the interface

of mobile application implementing the ACHA mechanism.

On compressing 572 characters, in Galaxy Tab ACHA only

spends less than 2 seconds. Although the best ACHA

performance is still under observation, practically nowadays
ACHA configuration has been able to be used to compress

SMS effectively. Thus, both above main contribution that

ACHA wants to offer practically can also be achieved by

current ACHA configuration (although the contribution has

not been optimal yet). Based on all the facts given previously

in this paper, this paper claims that ACHA is SMS

compression mechanism that practically efficient to compress

SMS and it has significant positive contributions to society.

VIII. CONCLUSION

Based on research that has been done so far to ACHA

mechanism, the proposed SMS compression mechanism
proposed in this paper (ACHA: Arithmetic Coding Hybrid

Ario) is proven to be practically effective to compress SMS

body efficiently. ACHA mechanism has been tested on

Android-operating-system-base mobile phone. The current

average ACHA compression ratio that has been researched is

71%, while the best compression ratio of ACHA can reach

less than 25%. However, this compression ratio is practically

still not proven as the best ACHA compression ratio. Until

today, the research to optimize ACHA compression ratio by

finding the best ACHA sub tables configuration is still under

observation.

REFERENCE

[1] Witten, Ian H. Neal, Radford M. Cleary, John G. 1987. Arithmetic

Coding for Data Compression.

[2] Lelewer, Debra A. Hirschberg, Daniel S. Data Compression.

[3] Mahmoud, Tarek M et al. Hybrid Compression Encryption Technique

for Securing SMS.

Fig 3. Average Compression Ratio of Varied Arithmetic Coding

Compared to Ideal Entropy Compression Ratio

(%)

