
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Implementation of Backtracking Algorithm in
Bookworm Adventures

Helena Suzane Graciella 13515032

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13515032@std.stei.itb.ac.id

Abstract—Today, people develop educational games to attract
children education. One of world’s well-known educational games
is: Bookworm Adventures. In this spelling game, players construct

words from a set of 16 letters (not all available). Many
approaches and methods may be implemented to play the game,
including the backtracking algorithm. This paper will cover that
matter. However, future improvements may be done.

Keywords—backtracking; tile score; spelling; suffix

I. INTRODUCTION

One of the most essential thing in the society today is
education—education not limited to the walls of schools, but
that which includes and is included in every aspect of life.
People have come to realization of the importance of education,
and thus have been trying to promote education to be enjoyable.
Since children are to grow to be future leaders, people have
come up with many great ideas to attract children to education,
one of them is educational games. One of world’s well-known
educational games is: Bookworm Adventures.

In the game Bookworm Adventures, a player is given 16
random letters, each with its own score. Not all from those 16
tiles can be used. Players have to construct words as best as
they can to play this game. This paper will cover how to
construct a word from a given set of 16 letters, with the
backtracking algorithm.

II. THEORIES

A. Backtracking Algorithm [1]

Definition
Backtracking is a DFS-based algorithm to find a solution

more efficiently.

General Properties
These followings are general properties of Backtracking

algorithm:
1) Solution, expressed as a vector with n-tuple X = (x1, x2, …,

xn), xi  Si where Si = possible component of the vector X;
2) Generator Function, expressed as T(k) to generate xk,

which is a component of the solution vector;
3) Constraint Function, expressed as B(x1, x2, . . ., xk) which

would convey the value of true when (x1, x2, . . ., xk) moves
towards goal; if it is true, xk+1 will be generated. The vector
will be obsolete otherwise.

Solution Space
Solution space consists of every possible solution. It is

organized in a tree structure. Every node represents a state of
the problem, whereas an edge is labeled xi. A path from the
root to a leaf means one possible solution. A series of such
paths is what we call solution space. This organization is called
state space tree.

Principles of Finding Solutions with Backtracking Algorithm
These are the principles of finding solutions with

backtracking algorithm:
1) Make paths from root to leaf in depth-first order.
2) Nodes generated are called live nodes.
3) A node being expanded is called the e-node (expand-node).
4) Every time an e-node is expanded, its path becomes longer.
5) If the path being constructed does not go towards solution,

the e-node is “killed” to be a dead node.
6) The function used to kill an e-node is called the

bounding/constraint function.
7) A dead node will not be expanded anymore.
8) If a path ends with a dead node, backtrack to the node’s

parent, then proceed to generate the parent’s child (if there
were any).

Figure 1. Backtracking Algorithm Illustration

Source: http://www.w3.org/2011/Talks/01-14-steven-phenotype/

procedure Backtrack(input k: integer)

{

Finding all solutions with backtracking

method; recursive.

Input: k, index of a component in the

solution vector x

Output: solution x = (x[1], x[2], ... ,

x[n])

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

}

Algorithm:

for every x[k] unexpanded that ((x[k] 

T(k)) and B(x[1], x[2], ... , x[k])

= true do

if (x[1], x[2], ... , x[k]) is a

solution then

save(x)

endif

Backtrack(k+1)

endfor
Figure 2. Common Scheme of Backtracking Algorithm

B. Bookworm Adventures

Bookworm Adventures is a role-playing word game.
Players help Lex finish his mission by forming words from the
letter jumble. Players will have to survive three mythic
storybooks and boost their power with gems, potions, and
magical treasures. [2]

There are 3 game modes in the game: Adventure/Adventure
Replay, Mini-games, and Arena. In the adventure mode,
players follow the story and construct words to attack enemies.
In the mini-games, players construct words to achieve high
score and rewards that can aid them in their adventure. In the
arena mode, unlocked after finishing the adventure mode,
players once again have to fight the bosses they have defeated.

In every battle, be it in the adventure/adventure replay or
the arena mode, players are given a set of 16 random letters. In
every turn, they may choose to build a word with a minimum
length of 3 and attack or to scramble the letters.

Each tile has its own point, indicated by a gem in the down-
right corner of the tile. There are three categories of tiles based
on their gems: Gold, Silver, and Bronze.

Tile Weight Letters Included

1 (bronze) A, D, E, G, I, L, N, O, R, S, T, U

1.25 (silver) B, C, F, H, M, P

1.5 (silver) V, W, Y

1.75 (gold) J, K

2 (gold) X, Z

2.75 (gold) QU
Figure 3. Tile Weight in Bookworm Adventures [3]

Tiles may also be powered up by gems or powered down.

Gem Power

Amethyst Poisons the enemy for two turns

Emerald Heals Lex for two hearts

Sapphire Freezes enemy for a turn

Garnet Weakens the enemy’s attack for two turns

Ruby Sets enemy on fire for three turns

Crystal Purifies Lex and the grid, shields Lex from
damage for one turn

Diamond Fully heals Lex, gives one of each potion type
Figure 4. Gems and their powers for tiles [4]

There is also a rainbow tile, and it is not considered a gem
tile. This tile acts as a wildcard, automatically giving the letter
needed to form any word. [5]

Power Down Description

Fire tile Destroys tiles below it when not used [6]

Smashed tile Causes no damage to the enemy even
when forming long words [7]

Warped tile Causes no damage and has the ability to
change the current letters into hard letters

every turn [8]

Plagued tile Causes no damage and has an ability to
spread to nearby tiles if not used quickly

[9]

Locked tile Cannot be used [10]

Alter tile Switches the current letters in the grid.
[11]

Figure 5. Power downs and their descriptions

Figure 6. Bookworm Adventures battle session

Source: http://www.popcap.com/bookworm-adventures

C. English Spelling

Up until now, there is no straight, defined rules of spelling
in English language, but a number of small researches have
been conducted to see if there were any general principles of
word-spelling. Some rules are just generalization, to which
there may be an exception. However, some rules are absolute.

Absolute Rules
1.) Most nouns are made plural simply by adding an -s.

However, nouns ending in the letters ch, sh, s, x, or z with
sibilant sounds are made plural by adding -es. Final
consonant z has to be doubled before adding -es. [12]

2.) To pluralize a noun ending in a y preceded by a consonant,
simply change the y to i and add -es. If the final y is
preceded by a vowel, simply add -s. [12]

3.) When adding a suffix that begins with a vowel to a word,
double the final consonant in the base word only if the
following conditions are met:
a. The base ends with a single consonant.
b. The vowel sound preceding the final consonant in the

base in the base is represented by a single vowel letter.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

c. The final consonant of the base is in an accented
syllable.

Do not double the final consonant before adding the suffix
if any one of these three conditions is not met.
Here are some notable exceptions to this rule:
a. Always double the final m of base words that end in the

syllable -gram before adding the suffix.
b. Do not double a final l before the suffix -ize, -ism, or -

ity.
c. Never double a final x. It is pronounced as two

consonants, /ks/, and so violates condition 1 of this rule.
[12]

4.) When adding a suffix that begins with a or o to a word that
ends with ce or ge, do not drop the final e from the base
word. If the suffix begins with e, i, or y, however, drop the
final e from the base. [12]

5.) If words end in ye, ee, or oe, drop the final e before adding
a suffix that starts with e. If the suffix does not begin with
the letter e, do not drop the final e from the word. [12]

6.) When adding suffix that begins with a vowel to a word that
ends with ue, drop the final e before adding the suffix. [12]

7.) When adding the suffix -ing to a word that ends in ie,
change the ie to y, and then add the suffix. [12]

8.) For most words that end in c, insert a k before a suffix that
begins with i, e, or y. The final c in these words retains the
/k/ sound after the suffix has been added. If the final c does
not retain the /k/ sound, do not add a k. [12]

9.) It is sometimes difficult to determine when to use the suffix
-ible and when to use the suffix -able at the end of a word.
The following general rules will show you the way.
a. If the base word ends in a hard c or a hard g, use the

suffix -able.
b. If the base itself is a complete English word, use the

suffix -able.
c. If you can add the suffix -ion to the base to make a

legitimate English word, then you should use -ible. [12]

Rules with exceptions
1.) Do not drop the final e before adding a suffix that begins

with a consonant. However, there are some unusual and
unexplainable exceptions to this rule:

 judge + -ment  judgment

 awe + -ful  awful

 nine + -th  ninth

 acknowledge + -ment  acknowledgment

 true + -ly  truly

 argue + -ment  argument

 whole + -ly  wholly [12]
2.) If a word ends in y, change the y to i before adding any of

the suffixes -able, -ance, or –ant.
Exception: charity + -able  charitable [12]

Rules of thumb
1.) Bigrams (combination of two letters) which seldom or

never appear in the dictionary are: [13] [14]

bk cx hv jk jx mq qg qs vb vq xd zb

bq dx hx jl jy mx qh qt vc vt xg zc

bx fk hz jm jz mz qj qv vd vw xj zf

bz fq iy jn kq pq qk qw vf vx xk zg

cb fv jb jp kv pv ql qx vg vz xv zh

cf fx jc jq kx px qm qy vh wj xr zj

cg fz jd jr kz qb qn qz vj wq xz zn

cj gq jf js lq qc qo sx vk wv yq zq

cp gv jg jt lx qd qp sz vm wx yv zr

cv gx jh jv mg qe qq tq vn wz yy zs

cw hk jj jw mj qf qr tx vp xb yz zx
Figure 7. Bigrams which seldom or never appear in the dictionary

2.) q often comes followed by a u. Although not all q comes
with a u, in Bookworm Adventures, there is no q tile, but
qu tile.
Therefore, we need to list trigrams which start or end with
qu and seldom or never appear in the dictionary.

quc quj qup quw gqu wqu

qud quk ququ qux jqu yqu

quf qul qus quz kqu

qug qum qut bqu pqu

quh qun quv fqu vqu
Figure 8. Trigrams which start or end with qu and seldom or never appear in

the dictionary

Common Suffixes
A suffix is a morpheme added at the end of a word to form

a derivative. The table below shows what suffix usually follow
a word, grouped by parts of speech. [15] [16]

Part of Speech Suffix

Nouns -s, -es, -ful, -hood, -fy, -ess, -less, -ism, -
ist, -al, -ish, -logy, -ology, -age, -ship, -
ese, -i, -ic, -ian, -ly, -ous, -y, -ify

Verbs -ing, -s, -es, -able, -ible, -ment, -tion, -ful,
-ion, -al, -ance, -ence, -ee, -er, -or, -ive, -d,
-ed

Adjectives -ly, -er, -est, -ity, -ty, -ness, -ise, -ize, -ate,
-en

Figure 9. Suffixes that usually follow certain parts of speech

III. BACKTRACKING ALGORITHM IN PLAYING BOOKWORM

In playing bookworm, the backtracking algorithm will be
implemented to find a valid word. To maximize the points
attained, check if the word found can be prolonged with a
suffix.

Finding a valid word

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Figure 10. Example set of letters

http://www.popcap.com/bookworm-adventures

General properties:
1) Solution: x = (x[1], x[2], . . . , x[n]) with n >= 3 that makes a

valid English word, x[i]  Si, Si = {every available tiles}
2) Generator Function: T(k) = available tiles which are not yet

taken for x so far, ordered by their score; if there were more
than one tiles with the same letter(s), only one will be
generated

3) Constraint Function: B(x) = (x[k-1], x[k]) is not included in
the bigrams or trigrams mentioned in Figure 5 and Figure 6

These are the steps to find a valid word with backtracking
algorithm:
1) Start with level 0 at the tree (Ø).
2) Generate nodes of the next level with the generator function

T(k).
3) Check the live node(s) of the next level with the order given

by the generator function. When checking a live node:
a) If x so far is a solution, stop.

b) If B(x) = false, kill the node. Go back to its parent.

c) If B(x) = true and x is not a solution, repeat step 2 to 3.
4) If no solution is found, scramble.

Let word = a global variable containing a found word and

path(n) = a function that returns a string which is the
characters contained in a treeNode, the pseudocode will be:

procedure FindWord(input n: treeNode)

{

Finding all solutions with backtracking

method; recursive.

Input: n, a treeNode which consists a

possible component of the solution vector

Output: path from root to solution node

}

Algorithm

if B(path(n)) do

generate child(ren) of n with generator

function T(n)

for every child of n unexpanded that do

if (path(n)) is a solution then

word  path(n)

else

FindWord(child(n))

endif

endfor

endif

Figure 11. Pseudocode for finding a valid word

Adding a suffix

Suffix Score Suffix Score Suffix Score

-ology 5.5 -able 4.25 -ize 4

-logy 4.5 -ance 4.25 -ness 4

-ship 4.5 -ence 4.25 -ity 3.5

-hood 4.25 -ible 4.25 -ate 3

-less 4 -ment 4.25 -est 3

-ify 3.75 -tion 4 -ise 3

-ful 3.25 -ive 3.5 -ly 2.5

-ish 3.25 -ful 3.25 -ty 2.5

-ism 3.25 -ing 3 -en 2

-age 3 -ion 3 -er 2

-ese 3 -ed 2

-ess 3 -ee 2

-ian 3 -er 2

-ist 3 -es 2

-ous 3 -or 2

-fy 2.75 -al 1

-ly 2.5 -d 1

-ic 2.25 -s 1

-al 2

-es 2

-y 1.5

-i 1

-s 1

Noun Verb Adjective

Figure 12 List of suffixes according to the parts of speech they may follow,
ordered by their scores according to Bookworm Adventure rule

The process will proceed to this part if and only if a valid
word has been found.

Since so far there is no decisive rule of spelling English
words, this process will just plug suffixes to the word found
according to its part of speech—no attempt to modify the base
word to fit the suffixes. The combination of the base word and
the suffix is then checked whether they make a valid word or
not.

If a valid word constructed from a base word and a suffix is
found, recheck if the new word can be prolonged with yet
another suffix.

This is how process (2) is undergone:
1. Determine to what part of speech the word belongs.
2. If it is a noun, a verb, or an adjective, check what suffixes

may generally follow it, according to its part of speech.
3. Search the suffixes, ordered by score. Plug them to the word

and see if it make a new valid word.
4. If a new valid word is found, repeat steps 1 to 4. Otherwise,

finish.
The suffixes will be checked ordered by scores. Suffixes of

the same score will be ordered alphabetically (Figure 12).

Let nounSuffix = a global variable that is an array of

suffixes that follow nouns; verbSuffix = a global variable

that is an array of suffixes that follow verbs; adjSuffix = a
global variable that is an array of suffixes that follow
adjectives, the pseudocode will be (a suffix is available when
the remaining tiles can construct it):

procedure Suffix()

{

Finding a word that may be constructed by the

global variable word + available suffix from

Figure 10.

Input:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Output: a new string for the global variable

word (if there were any)

}

Algorithm

i: integer

i  0

found: boolean

found  false

if word is a noun then

while not found and i < nounSuffix element

number do

if nounSuffix[i] is available then

found  word + nounSuffix[i]) is a valid

word

endif

if not found then

i  i + 1

else

word  word + nounSuffix[i]

Suffix()

Endif

endwhile

endif

if word is a verb then

while not found and i < verbSuffix element

number do

if verbSuffix[i] is available then

found  word + verbSuffix[i]) is a valid

word

endif

if not found then

i  i + 1

else

word  word + verbSuffix[i]

Suffix()

endif

endwhile

endif

if word is an adjective then

while not found and i < adjSuffix element

number do

if adjSuffix[i] is available then

found  word + adjSuffix[i]) is a valid word

endif

if not found then

i  i + 1

else

word  word + adjSuffix[i]

Suffix()

endif

endwhile

endif

Figure 13. Finding a suffix that can be appended to a word found previously

Main Program
Let stateSpace = the state space tree; root(t) = a

function that returns the root of a tree; Initialize(t) = a

procedure that empties tree t and; Scramble() is a function to
Scramble the letters, the main program will be:
Global Variables

word: string

nounSuffix, verbSuffix, adjSuffix: array of

string

stateSpace: tree

Algorithm

initialize(stateSpace)

FindWord(root(stateSpace))

while word is empty do

Scramble()

Initialize(t)

FindWord(root(stateSpace))

endwhile

Suffix()
Figure 14. Main program

Example
Let at a given time, Si = (O, X, B, S, E, E), this is how the

algorithm works.

Figure 15. The problem’s corresponding state space tree

The picture above illustrates how to find a valid word from
Si with the procedure from Figure 11. At the end of this
process, word = box. After finding a valid word, suffixes are
plugged and checked with the procedure from Figure 13. The
word box may be a noun or a verb. It will first enter the noun
if-statement.

Base Suffix Suffix Available? Valid?

-ology No

-logy No

-ship No

-hood No

-less No

-ify No

-ful No

-ish No

-ism No

-age No

-ese Yes No

-ess No

-ian No

-ist No

-ous No

-fy No

-ly No

-ic No

-al No

-es Yes Yes

box +

Figure 16. Illustration of procedure Suffix() before calling Suffix() after

finding a new valid word

After finding a new word, the procedure Suffix() will

call itself again.
The word boxes also may be a noun or a verb.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Base Suffix Suffix Available? Valid?

-ology No

-logy No

-ship No

-hood No

-less No

-ify No

-ful No

-ish No

-ism No

-age No

-ese No

-ess No

-ian No

-ist No

-ous No

-fy No

-ly No

-ic No

-al No

-es No

-y No

-i No

-s No

boxes +

Figure 17. Illustration of procedure Suffix() after finding a new word,

checking nounSuffix

Base Suffix Suffix Available? Valid?

-able No

-ance No

-ence No

-ible No

-ment No

-tion No

-ive No

-ful No

-ing No

-ion No

-ed No

-ee No

-er No

-es No

-or No

-al No

-d No

-s No

boxes +

Figure 18. Illustration of procedure Suffix() after finding a new word,

checking verbSuffix

IV. FUTURE POSSIBLE IMPROVEMENTS

The writer realizes that this paper is imperfect and has yet
to be improved. Here are the suggestions of improvements that
may be developed in the future:
1. More researches in English language may be conducted to

make a better, more decisive, and more reliable general
abstraction of its spelling rules.

2. When adding a suffix, try to apply the rules included in
chapter 2 of this paper. For example, changing the -ie in die
to y before adding -ing. This will avoid constructing dieing
from die and the program will rather come up with dying.

3. More intellect approach may be implemented where the
algorithm also takes care of the tiles power when making a
decision. For example, when the enemy is already poisoned

and dying, the algorithm avoids using a tile powered by an
amethyst gem; or when Lex is dying, seek to use a tile
powered by the emerald gem.

4. Handle cases where a word is of more than one part of
speech, for example: light may be a noun or a verb. Further
researches may be conducted to see which part of speech is
more likely and easily to be prolonged by a suffix. This is
to optimize the process of prolonging words with suffix in
procedure Suffix().

V. CONCLUSION

Bookworm Adventures is a role-playing word game. Players
help Lex finish his mission by forming words from the letter
jumble. Players will have to survive three mythic storybooks
and boost their power with gems, potions, and magical
treasures.

This spelling game uses the English language—a language
with no clear or decisive rules of spelling. A number researches
have been conducted, and the world have come with a
discovery of fact that a certain bigrams or trigrams seldom or
never appear in the English language.

With this heuristic, we can develop a backtracking
algorithm in solving the random letters, coming up with a
decent word, then attacking the enemies. However, certain
improvements may and should be done.

ACKNOWLEDGMENT

Praise be unto God Who is bountiful in grace and
providence, without Whom the writer is of no capability. The
writer is also grateful for the never-ending support from
parents, siblings, family, and friends. Last but not least, the
writer also thanks to Mrs. Masayu Leylia Khodra, Mr. Rinaldi
Munir, and Mrs. Nur Ulfa Maulidevi for their guidance in
teaching students Algorithm Strategies.

REFERENCES

[1] R. Munir, “Algoritma Runut-Balik,” in Diktat Kuliah IF2211 Strategi
Algoritma. Bandung, Indonesia: Penerbit Informatika ITB, 2009, ch. 7,
sec. 1-4, pp. 125-129.

[2] Available: http://www.popcap.com/bookworm-adventures-2

[3] Various Authors. Tile. Available:
http://bookwormadvs.wikia.com/wiki/Tile

[4] Various Authors. Gems. Available:
http://bookwormadvs.wikia.com/wiki/Gems

[5] Various Authors. Rainbow Tiles. Available:
http://bookwormadventures.wikia.com/wiki/Rainbow_Tile

[6] Various Authors. Fire Tiles. Available:
http://bookwormadventures.wikia.com/wiki/Fire_Tiles

[7] Various Authors. Tile Smash. Available:
http://bookwormadventures.wikia.com/wiki/Tile_Smash

[8] Various Authors. Warp Tile. Available:
http://bookwormadventures.wikia.com/wiki/Warp_Tile

[9] Various Authors. Plagued Tile. Available:
http://bookwormadventures.wikia.com/wiki/Plague_Tile

[10] Various Authors. Tile Lock. Available:
http://bookwormadventures.wikia.com/wiki/Tile_Lock

[11] Various Authors. Alter Tiles. Available:
http://bookwormadventures.wikia.com/wiki/Alter_Tiles

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

[12] M. Strumpf, A. Douglas, “Spelling,” in The Complete Grammar. New
Delhi, India: Goodwill Publishing House, 2008, ch. 14, sec. 1, pp. 385-
391.

[13] Prash. Impossible Bigrams in the English Language. Available:
https://linguistics.stackexchange.com/questions/4082/impossible-
bigrams-in-the-english-language

[14] P. Remaker, H. Brown, J. Pepersack, J. Lin. What are all of the two-letter
combinations that never occur in an English dictionary? Available:
https://www.quora.com/What-are-all-of-the-two-letter-combinations-
that-never-occur-in-an-English-dictionary

[15] M. Strumpf, A. Douglas, “Vocabulary,” in The Complete Grammar. New
Delhi, India: Goodwill Publishing House, 2008, ch. 15, sec. 2, pp. 460-
461.

[16] R. Carter, M. McCarthy, G. Mark, and A. O’Keeffe, “Word Formation,”
in English Grammar Today. Cambridge, United Kingdom: Cambridge
University Press, 2011, ch 50, pp. 182-185.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Mei 2017

Helena Suzane Graciella 13515032

