
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017 
 

Application of Boyer-Moore and Aho-Corasick 
Algorithm in Network Intrusion Detection System 

 
Kezia Suhendra / 135150631  

Program Studi Teknik Informatika  
Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  
113515063@std.stei.itb.ac.id 

 
 

Abstract—Nowadays, everyone is using networks to do almost 
all of their works that caused in the increasing number of 
hackers and intruders who want to intrude the computer’s 
network system. Many hackers and intruders have made tons of 
successful attempts in bringing down company networks and web 
services. All of these are showing that security is a big issue for all 
networks in today’s enterprise environment. A lot of methods 
have been used to defend the networks such as encryption, VPN, 
firewall, etc. Intrusion detection method can be considered as a 
new method to detect the anomaly or suspicious activity both at 
the network and host levels. String matching is the bottleneck of 
performance for the network intrusion detection system. Thus, it 
needs to use the most effective string-matching algorithm to be 
implemented in the system. There are Boyer-Moore and Aho-
Corasick algorithm that will be discussed in this paper. This 
paper discusses the effectiveness of each algorithm in network 
intrusion detection system. 

Keywords—network intrusion detection system, Boyer-Moore, 
Aho-Corasick. 

I.  INTRODUCTION 
Intrusion detection is the process of monitoring the events 

occurring in a computer system or network and analyzing them 
for signs of possible incidents, which are violations or 
imminent threats of violation of computer security policies, 
acceptable use policies, or security standard practices.[1]  

Intrusion detection system can find out about the intrusion 
when there are data packets that contain anomalies related to 
Internet protocols. Intrusion detection system will find out 
about the log suspicious activity by finding suspicious patterns 
known as signatures or rules and alert the system about that 
activity. All the malicious code will be stored in the database 
and each of the incoming data is compared with the stored data. 
Intrusion detection system can be divided into two categories: 
signature-based and anomaly detection system. For instance, if 
it is observed that a particular TCP connection requests a 
connection to a large number of ports, then it can be assumed 
that there is someone who is trying to conduct a port scan of 
most of the computers of the network. [2] 

The attacks not always come from outside the monitored 
network, they can also come from the inside of the monitored 
network. This attack can be called as trusted host attack. The 
network intrusion detection system uses string-matching 
algorithm to compare the payload of the network packet with 
the pattern entries of the intrusion detection rules. This is why 

string matching is the important part of every network intrusion 
detection system. In fact, the performance of all network 
intrusion detection systems depends almost entirely on the 
performance of the string-matching algorithm. That’s why the 
network intrusion detection system needs the most effective 
string matching to run in the system. The quicker the execution 
time, the faster the intrusion will be found by the system.  

There are many other things that network intrusion 
detection system can provide such as backing up firewalls, 
controlling file access, controlling the administrator’s 
activities, protection against viruses, detecting unknown 
devices, detecting default configurations, and many more. 
Snort is an open source intrusion detection system available to 
the general public for free (open source).  Snort is capable to 
track packet logging and analyze real time traffic on IP 
networks. Snort can perform all the basic functions that are 
needed in network intrusion detection system such as protocol 
analysis and content matching. It is a cross-platform, 
lightweight intrusion detection system, which can be deployed 
on a variety of platforms to monitor TCP/IP networks and 
detect suspicious activity. [3]  

 

II. THEORIES 

A. Boyer-Moore Algorithm 
In Boyer-Moore algorithm, the characters of pattern are 

matched starting from the last character of pattern to the first 
character of pattern (from right to left). Let the string has n 
characters and the pattern has m character(s). If there is a 
mismatch between the character of the pattern and the character 
of the string, the character in the string will be searched within 
the rest of the characters that haven’t been matched. If there is 
no occurrence of the character in the pattern, then all of the 
characters of pattern will be shifted m character long towards 
the next character in the string. But, if there is an occurrence of 

Figure 1 - NIDS Basics 
(Source: http://s10.postimg.org/4467u4oc9/mod8_fig1.png) 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017 
 

the character in the pattern, then the exact same character in the 
pattern will be shifted towards that certain character in the 
string. This algorithm will be more effective than ever if the 
alphabet character is large and slow when the alphabet is small. 

There are two methods in Boyer-Moore algorithm such as 
The Looking-Glass Technique and The Character-Jump 
Technique. Let the string named as s and the pattern named as 
w. The looking-glass technique does the comparison from the 
last character of w with one of the character in s. If it is a 
match, then the next comparison starts from the character on 
the left of the last character in w. W will be shifted until all of 
the characters in s has been compared. Meanwhile, let p as the 
character in the string s that mismatches with the character in 
w. The character-jump technique does an action when there is a 
mismatch between the character in s and in w. The action that 
will be taken based on the occurrence of p in w. There will be 
several types of action such as finding the exact character that 
match and align that character with p or shift all of the 
characters from the last comparison. 

 Boyer-Moore algorithm preprocesses the pattern and the 
string to build the last occurrence function. The last occurrence 
function will be represented in a table that consists of the index 
where the last occurrence of the character in string occurs in 
the pattern. If there is no such character in the pattern then fill 
the table with -1. Boyer-Moore worst case running time is 
O(nm + A) and the best case running time is O(n/m). Clearly, 
Boyer-Moore algorithm is faster than Brute Force algorithm.  

 
Figure 2.1 - Boyer-Moore String Example 

(Source: https://koding4fun.files.wordpress.com/2010/05/complete_example.jpg) 
 

Below is the implementation of Boyer-Moore algorithm in 
C#. 

public static int bmMatch(string text, string pattern)   
        {   
            if (pattern.Length == 0)   
            {   
                return -1;   
            }   
   
            int[] charTable = makeCharTable(pattern);   
            int[] jumpTable = makeJumpTable(pattern);   
   
            for (int i = pattern.Length -
 1, j; i < text.Length;)   
            {   
                for (j = pattern.Length - 1;  
pattern[j] == text[i]; --i, --j)   
                {   
                    if (j == 0)   
                    {   
                        return i;   
                    }   
                }   
                i += Math.Max(jumpTable 
[pattern.Length - 1 - j], charTable[text[i]]);   
            }   
   
            return -1;   

        }   
   
        private static int[] makeCharTable(string pattern)   
        {   
            const int ALPHABET_SIZE = Char.MaxValue + 1;   
            int[] table = new int[ALPHABET_SIZE];   
            for (int i = 0; i < table.Length; ++i)   
            {   
                table[i] = pattern.Length;   
            }   
            for (int i = 0; i < pattern.Length - 1; ++i)   
            {   
                table[pattern[i]] = pattern.Length - 1 - i;   
            }   
            return table;   
        }   
   
        private static int[] makeJumpTable(string pattern)   
        {   
            int[] table = new int[pattern.Length];   
            int lastPrefixPosition = pattern.Length;   
            for (int i = pattern.Length - 1; i >= 0; --i)   
            {   
                if (isPrefix(pattern, i + 1))   
                {   
                    lastPrefixPosition = i + 1;   
                }   
                table[pattern.Length - 1 - i] =  
lastPrefixPosition - i + pattern.Length - 1;   
            }   
            for (int i = 0; i < pattern.Length - 1; ++i)   
            {   
                int slen = suffixLength(pattern, i);   
                table[slen] = pattern.Length - 1 - i + slen;   
            }   
            return table;   
        }   
   
        private static bool isPrefix(string pattern, int p)   
        {   
            for (int i = p, j = 0; i < pattern.Length; ++i, ++j) 
  
            {   
                if (pattern[i] != pattern[j])   
                {   
                    return false;   
                }   
            }   
            return true;   
        }   
   
        /**  
         * Returns the maximum length of the substring ends at p 
and is a suffix.  
         */   
        private static int suffixLength(string needle, int p)   
        {   
            int len = 0;   
            for (int i = p, j = needle.Length - 1;   
                     i >= 0 && needle[i] == needle[j]; --i, --
j)   
            {   
                len += 1;   
            }   
            return len;   
        }   
} 

 

B. Suffix Trees 
A suffix tree is a compressed dynamic tree or prefix tree 

(trie) that contains all of the suffixes of the given text as their 
keys and positions in the text as their values. The suffix tree is 
an important data structure used for string-matching algorithm. 
Suffix tree stores string in a unique way so that common string 
will be stored only once. The suffix tree for string named as s 
with length n has exactly n leaves numbered 1 to n. Each edge 
of the tree will be labeled as a non-empty substring of s. There 
are no two edges that have string labels beginning with the 
same character and all the internal nodes have two children 
with the possible exception of the root. 

The suffix tree of a string named as s with length n can be 
build in O(n) time. Meanwhile, the string searching operation 
of a substring with length m can be done in O(m) time after the 
suffix tree has been built. The greatest strength of suffix tree is 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017 
 

the ability to search efficiently with mismatches. The suffix 
tree can be implemented in many ways such as hash map, 
unsorted array, sorted array, and balanced search tree. Below is 
the example of suffix tree for string “BANANAS”. 

  
Figure 2.2 - Suffix Tree Example 

(Source: http://marknelson.us/attachments/1996/suffix-trees/FIGURE1.gif) 
 

  
From figure 2.2, can be seen that the tree contains all of 

“BANANAS” suffixes. All of the suffixes include the word 
“BANANAS” itself, “ANANAS”, “NANAS”, and so on until 
the suffix that left is the alphabet S. 

C. Aho-Corasick Algorithm 
Aho-Corasick algorithm is a string-matching algorithm that 

locates elements of a finite set of string within an input text. 
Basically, this algorithm is a kind of dictionary-matching 
algorithm because it matches all strings simultaneously. This 
algorithm can reduce the time taken for searching because it is 
capable to match all the strings at once. On the other hand, the 
other algorithm such as Boyer-Moore can match only one 
pattern at a time. 

This algorithm constructs a dynamic tree or trie using suffix 
tree like structure for all of the patterns that need to be 
matched. The trie that had been constructed resembles a finite 
state machine with additional links between the various internal 
nodes representing a pattern to the node containing the longest 
proper suffix. These links make the transition between the 
failed string matches to other branches of the trie, which have a 
common prefix. It means there is no need to do a backtracking 
during the transition between string matches. 

The trie will be needed during the run time for matching 
purposes. When the string dictionary is known in advance, the 
trie can be constructed offline and then the trie can be used for 
real time searching with network data. The suffix tree only 
need to be reconstructed when there is addition or change to the 
pattern in the set of rules. In case of the trie is known 
beforehand, the execution time will be linear based on the 
length of the input plus the number of matched entries. 

The difference between this algorithm and Boyer-Moore 
algorithm in case of shifting is that in Boyer-Moore a single 
pattern is sliding along the text, meanwhile in this algorithm 
slides the trie while performing the shifting techniques. In this 
algorithm there are two types of shifting such as bad character 
shift and good prefix shift. 

In bad character shift, if there is a mismatch occurs then the 
suffix tree is shifted to align to the next occurrence of the 

character in some other pattern that hasn’t been checked in the 
tree. The length of the smallest suffix in the tree will shift the 
window if there is no match of a particular character in the 
pattern available. There is no backtracking in this algorithm.  

On the other hand, in good prefix shift there is two kind of 
shift, the first one is allowing the window to be shifted to the 
next occurrence of a complete prefix that has already been 
encountered as a substring of some other pattern. The second 
one is shifting the window to the next occurrence of some 
prefix of the correctly matched text as the suffix of some other 
pattern in the tree. 

The performance of this algorithm depends on the suffix 
tree’s performance. Implementing the right hash set of the 
suffix tree can enhance the performance of this algorithm. The 
complexity for this algorithm is O(n) and clearly it is faster 
than Boyer-Moore’s complexity. 

Here is an example of string matching in Aho-Corasick 
algorithm, consider a dictionary consisting of the following 
words {a, ab, bab, bc, bca, c, caa}. 

Table 1 - Aho-Corasick Data Structure 
(Source: https://en.wikipedia.org/wiki/Aho–Corasick_algorithm) 

Path In Dictionary Suffix Link Dictionary Suffix 
Link 

() -   

(a) + ()  

(ab) + (b)  

(b) - ()  

(ba) - (a) (a) 

(bab) + (ab) (ab) 

(bc) + (c) (c) 

(bca) + (ca) (a) 

(c) + ()  

(ca) - (a) (a) 

(caa) + (a) (a) 

The black directed arc from node to node represents the 
name that is found by appending one character. So there is a 
black arc from (bc) to (bca). The blue directed arc from node 
to node represents the longest possible strict suffix of it in the 
graph. For example, for node (caa), its strict suffixes are (aa), 
(a) and (). There is a blue arc from (caa) to (a) because (a) is 
the longest strict suffixes that exists in the graph. The green 
arc from node to the next node in the dictionary suffix 
represents the way that can be reached by following blue arcs. 
For example, there is a green arc from (bca) to (a) because (a) 
is the first node in the dictionary that is reached when 
following the blue arcs to (ca) and then on to (a).  

 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017 
 

 
Figure 2.3 - Aho-Corasick Example 

(Source: https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/Ahocorasick.svg/220px-
Ahocorasick.svg.png) 

 
At each step, the current node is extended by finding its 

child, and if that doesn't exist, finding its suffix's child, and if 
that doesn't work, finding its suffix's suffix's child, and so on, 
finally ending in the root node if nothing's seen before. When 
the algorithm reaches a node, it outputs all the dictionary 
entries that end at the current character position in the input 
text. This is done by printing every node reached by following 
the dictionary suffix links, starting from that node, and 
continuing until it reaches a node with no dictionary suffix 
link. In addition, the node itself is printed, if it is a dictionary 
entry. [4] 

 
Execution on input string abccab yields the following 

steps. 
Node Remaining 

String 
Output: End 

Position Transition Output 

() abccab  start at root  

(a) bccab a:1 () to child (a) Current node 

(ab) ccab ab:2 (a) to child (ab) Current node 

(bc) cab bc:3, c:3 (ab) to suffix (b) 
to child (bc) 

Current Node, 
Dictionary suffix 
node 

(c) ab c:4 (bc) to suffix (c) 
to suffix () to 
child (c) 

Current node 

(ca) b a:5 (c) to child (ca) Dictionary suffix 
node 

(ab)  ab:6 (ca) to suffix (a) 
to child (ab) 

Current node 

Table 2 - Analysis of Input String abccab 
(Source: https://en.wikipedia.org/wiki/Aho–Corasick_algorithm) 

 
Below is the implementation of Aho-Corasick algorithm in 

C#. 
public AhoCorasickTree(string[] keywords)   
        {   
            if (keywords == null) throw new ArgumentNullException("keywords"
);   
            if (keywords.Length == 0) throw new ArgumentException("should co
ntain keywords");   
   
            _rootNode = new AhoCorasickTreeNode();   
   
            var length = keywords.Length;   
            for (var i = 0; i < length; i++)   
            {   
                AddPatternToTree(keywords[i]);   
            }   
   
            SetFailures();   
        }   
   
        public bool Contains(string text)   
        {   
            var currentNode = _rootNode;   

   
            var length = text.Length;   
            for (var i = 0; i < length; i++)   
            {   
                while (true)   
                {   
                    var node = currentNode.GetNode(text[i]);   
                    if (node == null)   
                    {   
                        currentNode = currentNode.Failure;   
                        if (currentNode == _rootNode)   
                        {   
                            break;   
                        }   
                    }   
                    else   
                    {   
                        if (node.IsFinished)   
                        {   
                            return true;   
                        }   
   
                        currentNode = node;   
                        break;   
                    }   
                }   
            }   
   
            return false;   
        }   
  
        private void AddPatternToTree(string pattern)   
        {   
            var latestNode = _rootNode;   
            var length = pattern.Length;   
            for (var i = 0; i < length; i++)   
            {   
                latestNode = latestNode.GetNode(pattern[i])   
                             ?? latestNode.AddNode(pattern[i]);   
            }   
   
            latestNode.IsFinished = true;   
            latestNode.Results.Add(pattern);   
        }   
   
        private void SetFailures()   
        {   
            _rootNode.Failure = _rootNode;   
            var queue = new Queue<AhoCorasickTreeNode>();   
            queue.Enqueue(_rootNode);   
   
            while (queue.Count > 0)   
            {   
                var currentNode = queue.Dequeue();   
                foreach (var node in currentNode.Nodes)   
                {   
                    queue.Enqueue(node);   
                }   
   
                if (currentNode == _rootNode)   
                {   
                    continue;   
                }   
   
                var failure = currentNode.Parent.Failure;   
                var key = currentNode.Key;   
                while (failure.GetNode(key) == null && failure != _rootNode)
   
                {   
                    failure = failure.Failure;   
                }   
   
                failure = failure.GetNode(key);   
                if (failure == null || failure == currentNode)   
                {   
                    failure = _rootNode;   
                }   
   
                currentNode.Failure = failure;   
                if (!currentNode.IsFinished)   
                {   
                    currentNode.IsFinished = failure.IsFinished;   
                }   
   
                if (currentNode.IsFinished && failure.IsFinished)   
                {   
                    currentNode.Results.AddRange(failure.Results);   
                }   
            }   
        }   
   
        private class AhoCorasickTreeNode   
        {   
            public readonly AhoCorasickTreeNode Parent;   
            public AhoCorasickTreeNode Failure;   
            public bool IsFinished;   
            public List<string> Results;   
            public readonly char Key;   
   
            private int[] _buckets;   
            private int _count;   
            private Entry[] _entries;   
   
            internal AhoCorasickTreeNode()   
                : this(null, ' ')   
            {   
            }   
   
            private AhoCorasickTreeNode(AhoCorasickTreeNode parent, char key
)   
            {   
                Key = key;   
                Parent = parent;   
   
                _buckets = new int[0];   
                _entries = new Entry[0];   
                Results = new List<string>();   



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017 
 

            }   
   
            public AhoCorasickTreeNode[] Nodes   
            {   
                get { return _entries.Select(x => x.Value).ToArray(); }   
            }   
   
            public AhoCorasickTreeNode AddNode(char key)   
            {   
                var node = new AhoCorasickTreeNode(this, key);   
   
                var newSize = _count + 1;   
                Resize(newSize);   
   
                var targetBucket = key % newSize;   
                _entries[_count].Key = key;   
                _entries[_count].Value = node;   
                _entries[_count].Next = _buckets[targetBucket];   
                _buckets[targetBucket] = _count;   
                _count++;   
   
                return node;   
            }   
          }  

 

III. THE APPLICATION OF BOYER-MOORE AND AHO-CORASICK 
ALGORITHM 

A. Boyer-Moore Algorithm 
Boyer-Moore algorithm’s performance is based on the case 

of the string matching. The worst-case example for Boyer-
Moore is the pattern to match is defined as “baaaaa” and the 
string is defined as “aaaaaaaaa”. The shift of the pattern can be 
seen in the picture below. 

 
Figure 3 - Boyer-Moore Worst Case 

(Source: http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2016-2017/Pencocokan-String-
(2017).ppt) 

 

Beside that kind of case, the performance of Boyer-Moore 
algorithm can be considered fast enough in string matching. In 
this algorithm, several arrays will be needed to store the string, 
the pattern to be matched, and the last occurrence of the 
character in the pattern. The shifting processes will depend on 
the type of pattern to be matched with the string. But in this 
case, we’ll not use the kind of pattern for the worst-case 
scenario. 

This algorithm can be considered fast enough because it 
matches the pattern with the string from the last character to the 
first character of the pattern or in other words it does the string 
matching from right to left. If there is a mismatch occurs in the 
process then the pattern will be shifted right away. 

The result of the Boyer-Moore algorithm in string matching 
can be seen in the table and graph below. The algorithm is run 
with inputs of various sizes and the pattern is kept at a constant 
size, 40. 

Table 3 - Boyer-Moore Result 

Input Size Execution Time (in seconds) 

20000 1.43 

60000 3.89 

100000 7.13 

 

 
Diagram 1 - Boyer-Moore Result 

 

B. Aho-Corasick Algorithm 
Aho-Corasick algorithm’s performance is based on the 

suffix tree implementation. Thus, the right structure should be 
chosen for the suffix tree implementation in order to gain the 
best result. Hash set is one of the structures that can be 
implemented in suffix tree. Both sparse hash set and dense 
hash set will be used as the structure for the suffix tree and 
we’ll see which one is the better one to be implemented in 
suffix tree for this algorithm. 

Sparse hash set is basically a hash table, which uses sparse 
table to implement the underlying array. This data structures 
stores only one element at one position in the hash set. If the 
position it is going to store is already occupied then it must 
search for the new position, which is still unassigned because 
each position is only allowed for one element. This kind of 
collision problem can be resolved by the quadratic internal 
probe, which is employed during the hashing operation. 

Counting the key of the value so it can be inserted in the 
array exactly in the key position does the insertion in the hash 
set. The key can be counted using the modulus function, the 
integer i modulus by the size of the hash set. If the position had 
been occupied before then search for an available position.  

If the table is full then the table will grow in size and all the 
data in the table will be rehashed and inserted into the new 
table using the same method. On the other hand, if the table is 
too empty then the table will shrink in size and all the data will 
be rehashed and inserted into the new table using the same 
method. When there is an element that needs to be deleted, 
then the value of the element will be replaced with the default-
deleted values. 

The main difference between sparse hash set and dense 
hash set is a sparse hash set employs sparse table as its 
underlying array, meanwhile dense hash set employs a simple 
array. From this difference, we can see that dense hash set will 
require more space than sparse hash set but the time 
requirement for dense hash set will be faster for various 

0	

2	

4	

6	

8	

20000	 60000	100000	

Boyer-
Moore	



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017 
 

operations rather than sparse hash set. This can happen because 
in sparse hash set, the memory management will take some 
time, which is not the case in dense hash set. 

Despite the fact that dense hash set is faster than sparse 
hash set, it will be difficult to distinguish between the 
unassigned positions and the deleted positions. In a sparse 
table, this can be distinguished because the deleted values will 
be replaced by a bitmap and default values. Thus, dense hash 
set requires two default values for the unassigned and deleted 
positions. When a new dense hash set is made, all of the 
positions in the array will be initialized with the default values 
for unassigned positions. 

The results that have been obtained with both sparse hash 
set and dense hash set implementations of the suffix tree in 
Aho-Corasick algorithm can be seen in the table below. The 
Aho-Corasick algorithm is run with inputs of various sizes and 
the pattern is kept at a constant size, 40. 

Table 4 - Aho-Corasick Result 

Input Size 
Execution Time (in seconds) 

Sparse Hash Set Dense Hash Set 

20000 23.34 21.47 

60000 63.09 58.76 

100000 101.29 92.48 

 

 
Diagram 2 - Aho-Corasick Result 

 

From the table and graph for Aho-Corasick algorithm, can 
be seen that dense hash set in Aho-Corasick algorithm gives a 
better performance than sparse hash set in the Aho-Corasick 
algorithm. The more the input size increase, the better result 
the dense hash set will pronounce. But from both tables for 
Boyer-Moore and Aho-Corasick algorithm, can be seen that 
both kind of structures implementation for the suffix tree 
perform better than the Boyer-Moore algorithm in case of 
string matching. 

IV. CONCLUSION 
Security is needed in every company’s networking system 

so that intruders or hackers from outside and inside the system 
can’t intrude the system. In the network intrusion detection 
system, it needs to compare the pattern with the string as fast as 

possible so when there is an anomaly in the system’s data 
packets, it can be detected early. Boyer-Moore is fast enough to 
be implemented in the network intrusion detection system.  

Although Boyer-Moore can be categorized as a fast string 
matching algorithm, Aho-Corasick is faster than Boyer-Moore 
so it is better to implement Aho-Corasick in network intrusion 
detection system. But for a far better result, the suffix tree in 
Aho-Corasick should be implemented with dense hash set 
structure. Despite the fact that Aho-Corasik is the better 
solution for the network intrusion detection system, it’s 
performance can be enhanced by implementing the suffix tree 
in Aho-Corasick using the right structure such as hash set. But 
you should be careful in choosing the right structure for hash 
set, not all of the hash set can enhance the algorithm 
performance. 

ACKNOWLEDGMENT 
First of all, I would like to thank God for His blessings so 

that I can finish this paper. I wish to express my sincere 
gratitude towards Dr. Ir. Rinaldi Munir MT., as my lecturer in 
this subject. I would also like to thank both of my parents who 
keep on praying for me and motivating me because without 
them I won’t be here, studying in Bandung of Institute 
Technology. 

 

REFERENCES 
[1] http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-

94.pdf. Guide to Intrusion Detection and Prevention Systems (IDPS), 
NIST CSRC special publication SP 800-94, released 02/2007. Retrived 
on 15th May 2017. 

[2] https://en.wikipedia.org/wiki/Intrusion_detection_system.Wikipedia. 
Intrusion Detection System. Accessed on 13th May 2017. 

[3] http://ranger.uta.edu/~dliu/courses/cse6392-ids-
spring2007/papers/USENIXLISA99-Snort.pdf. Martin Roesch, Snort- 
Lightweight Intrusion Detection for Networks, Stanford 
Telecommunications, Inc, 13th LISA conference, 1999, 229-223. 
Retrieved on 13th May 2017. 

[4] https://en.wikipedia.org/wiki/Aho–Corasick_algorithm. Wikipedia. Aho-
Corasick algorithm. Accessed on 15th May 2017. 

[5] http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf. 
Biosequence Algorithms, Spring 2005. Lecture 4: Set Matching and 
Aho-Corasick Algorithm. Retrived on 15th May 2017. 

[6] http://www.geeksforgeeks.org/pattern-searching-set-8-suffix-tree-
introduction/. Pattern Searching | Set 8 (Suffix Tree Introduction). 
Accessed on 14th May 2017. 

[7] https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/suffixtrees.pdf. Suffix 
Trees. CMSC 423. Retrieved on 14th May 2017. 

[8] https://www.lifewire.com/introduction-to-intrusion-detection-systems-
ids-2486799. Introduction to Intrusion Detection System (IDS). 
Accessed on 13th May 2017. 

[9] https://www.sans.org/security-resources/idfaq/what-is-network-based-
intrusion-detection/2/3. Accessed on 13th May 2017. 

[10] http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2016-
2017/Pencocokan-String-(2017).ppt. Munir, R. Pencocokan String. 
Retrieved on 14th May 2017. 

 
  

0	
20	
40	
60	
80	
100	
120	

Sparse	
Hash	Set	

Dense	Hash	
Set	



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017 
 

PERNYATAAN 
Dengan ini saya menyatakan bahwa makalah yang saya tulis 
ini adalah tulisan saya sendiri, bukan saduran, atau 
terjemahan dari makalah orang lain, dan bukan plagiasi. 
 

Bandung, 17 Mei 2017 
 

 
 
 
 
 
 

Kezia Suhendra 13515063

 
 
 

 
Kezia Suhendra 13515063

 Kezia Suhendra 13515063
Kezia Suhendra 13515063

Kezia Suhendra 13515063
 


