
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Optimizing Grid-Based Pathfinding with Visibility
Graph and Floyd-Warshall Algorithm

Felix Limanta 13515065
Program Studi Teknik Informatika

Institut Teknologi Bandung
Bandung, Indonesia

felixlimanta@gmail,com, 13515065@std.stei.itb.ac.id

Abstract—This paper discusses improvements to the

pathfinding process on uniform-cost grid maps. Instead of

modifying the pathfinding algorithm, the graph generation is

discussed to minimize the number of nodes in the pathfinding

graph and frontload some of the process for faster dynamic

pathfinding. This paper first discusses the concept of visibility

graph and pathfinding, then attempts to implement them in an

algorithm. Then, a simple experiment is held to compare the

performances of pathfinding without a visibility graph, with a

visibility graph, and with precomputed paths. Finally, the results

are compared and discussed.

Keywords—pathfinding; visibility graph; A*; Floyd-Warshall

I. INTRODUCTION

Pathfinding is a fundamental part of many important
applications in the fields of, for examples, GPS, video games,
robotics, and logistics. Pathfinding has been and can be
implemented in static, dynamic, and real-time environments.
Although recent developments have improved the accuracy and
efficiency of pathfinding techniques over the past few decades,
the problem still attracts research. Generally, pathfinding
consists of two main steps: graph generation and a pathfinding
algorithm.

Graph generation refers to the process of modelling actual
environments to a graph useable by a pathfinding algorithm. A
popular representation of pathfinding algorithms is the uniform-
cost grid maps, which is widely used in areas such as robotics,
artificial intelligence, and video games.

Fig. 1. Grid-based pathfinding example
Source: www.growingwiththeweb.com

The second step in the pathfinding process is the pathfinding
algorithm itself. Here, the problem is to return the shortest
(optimal) path from a defined origin point to a destination point
in an efficient manner. There are a variety of pathfinding
algorithms for various situations. The most notable algorithm for

finding the shortest path between two vertices is A*, which uses
a heuristic function to travel a search graph in a best-first manner
until a goal node is found.

However, basic pathfinding algorithms applied wholesale to
the entire grid maps can be prohibitively expensive.
Furthermore, basic pathfinding algorithms do not cope well with
any changes to the map, such as changes to the origin and
destination points, which invalidates the whole pathfinding
process.

The pathfinding discussed in this paper is dynamic
pathfinding, where the destination point moves dynamically.
Consequently, paths must be recalculated every time the
destination point moves.

This paper discusses improvements on basic pathfinding
done on uniform-cost grid maps. Instead of discussing changes
to the pathfinding algorithm, this paper discusses better graph
generation for a more efficient pathfinding. Specifically, this
paper discusses skeletonizing a grid map to a visibility graph,
then precomputing the shortest path between all pairs of vertices
in said visibility graph.

The paper is organized as follows. Section II reviews the
basic concepts relevant to this paper, which includes visibility
graphs and pathfinding algorithms (A* and Floyd-Warshall).
Section III how to implement them in a computer program.
Section IV presents a sample experiment to test the performance
between pathfinding without a visibility graph, pathfinding with
a visibility graph, and pathfinding with precomputed paths.
Section V then analyzes the results from the experiment and
suggests further improvements. Finally, section VI concludes
this paper.

II. BASIC CONCEPTS

A. Visibility Graph

A visibility graph is a graph of intervisible locations. In this
case, the visibility graph of a map is a graph composed of each
junction in the map. A junction is any corner or intersection in
the map.

Visibility graphs serve to reduce the total number of vertices
to check. Without a visibility graph, a pathfinding algorithm
must check every tile in a map, which is very costly in terms of
computational time and space. Using a visibility graph, a

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

pathfinding algorithm finds the shortest path using only the tiles
associated with the vertices in the graph, with two additional
points: the origin and the destination, which is constantly
updated in real-time pathfinding.

Fig. 2. Visibility graph for polygonal map representation

Source: [4]

B. A*

A* is an algorithm for finding the shortest path between a
pair of vertices (single-pair shortest-path). A* is based on
Djikstra’s Algorithm, which is intended to find the shortest path
from a vertex to any other vertex (single source shortest path).

Fig. 3. Tiles checked by Djikstra’s (left) and A* (right)

Source: [4]

A* is an informed search algorithm. It finds a solution by
searching among all possible paths to the destination for the least
expensive. Among all available paths, it first considers the ones
that appear to lead faster to the solution. A* is applied on a
weighted graph: starting from a specific vertex, it constructs a
tree of paths starting from that vertex while expanding paths one
vertex at a time, until one of its paths ends at the destination
vertex.

A* selects a path which minimizes ݂ሺ𝑛ሻ = ݃ሺ𝑛ሻ + ℎሺ𝑛ሻ
where g(n) is cost of going from the origin to the last vertex on
the path and h(n) is the estimated cost from said vertex to the
destination. The heuristic is problem-specific. For the algorithm
to find the actual shortest path, the heuristic must be admissible,
which means it won’t overestimate the actual cost to the
destination.

For grid-based pathfinding with four movement possibilities,
an admissible heuristic is the Manhattan Distance, which is the
distance between points strictly using horizontal and vertical
movement. This paper uses Manhattan Distance as its heuristic.

Fig. 4. Manhattan Distance

Source: www.growingwiththeweb.com

A* has a worst-case time complexity of O(|E|) and a worst-
case space complexity of O(|V|).

C. Floyd-Warshall Algorithm

The Floyd-Warshall algorithm is an algorithm for finding the
shortest paths for all pairs of vertices (all-pair shortest-path). The
algorithm is considered applications of dynamic programming.

Floyd-Warshall uses the adjacency matrix D0
 as its input. If

there is an edge between vertices i and j, D0
ij contains its length;

otherwise, D0
ij is set to positive infinity.

In each iteration, this matrix is recalculated such that it
contains the cost of paths among all pairs of nodes using a
gradually enlarging set of intermediate nodes. The matrix D1
contains costs among all nodes using at most 1 intermediate
node. Dn contains costs using at most n intermediate nodes.

This transformation can be described using the following
recurrence relation. 𝐷𝑛 = max, {𝐷𝑛−1, 𝐷𝑛−1 + 𝐷𝑛−1}

Because this transformation never rewrites elements which
are used to calculate the new matrix, the same matrix can be used
for both Dn and Dn+1.

Fig. 5. Floyd-Warshall algorithm execution example illustration
Source: Wikimedia Commons

The basic Floyd-Warshall algorithm finds the total cost from
all pairs of vertices; details of the path can be easily
reconstructed with simple modifications to the algorithm.
Besides storing the cost in the matrix D, an additional matrix N
can be used to store which vertex is next on a path for a pair of
vertices. The matrix is also continually updated along with the
cost matrix.

Floyd-Warshall has a worst-case time complexity of Θ(|V|3)
and a worst-case space complexity of Θ(|V|2).

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

III. IMPLEMENTATION

A. Visibility Graph Generation

The visibility graph of a map can be generated with any
graph-traversal algorithm. Breadth-first search is used here to
improve spatial locality.

Graph generation begins at the first junction in map, which
is added to the graph as its first vertex. Every subsequent
junction found is then queued for processing.

Each cardinal direction in the junction currently explored is
then explored until either an inaccessible tile, which means that
going to that direction from that junction leads to a dead end, or
another junction. If another junction is found, the junction is
added to the graph and queued for inspection, then a directed
edge with information regarding direction and distance from the
parent junction to the found junction is added to the graph.

Fig. 6. Visibility graph generation illustration
Source: author

Pseudocode for visibility graph generation with BFS
follows:

function generateGraphſƀ → Graph
 Graph g
 Set visited
 Queue toVisit

 Point curr_point ← first junction in map
 g.addNode(curr_point)
 toVisit.enqueue(curr_point)

 while (toVisit is not empty)
 currPoint ← toVisit.dequeueſƀ
 if not(visited.contains(currPoint))
 visited.add(currPoint)

 for (each cardinal direction)
 Point checked_point ← curr_point
 while (isAccessible(checked_point) and
 not(isJunction(checked_point)))
 checked_point ← moveſchecked_point, directionƀ

 if (isAccessible(checked_point))
 if (Node checked_point does not exist in g)
 g.addNode(curr_point)
 toVisit.enqueue(curr_point)
 g.addEdge(curr_point, checked_point,
 direction, distance between points)

→ g

B. Floyd-Warshall Algorithm

The Floyd-Warshall is used here to further frontload cost
calculation. Given that a visibility graph is usually static, the cost
between all pairs of junctions can be precomputed to further
drive down pathfinding computational cost at real-time.

The pseudocode for general Floyd-Warshall implementation
is as follows. FloydWarshall() is used to find minimum cost
between all pairs, while ReconstructPath(i, j) is used to find
the shortest path between node i and node j.

int [|V|][|V|] dist
int [|V|][|V|] next

procedure FloydWarshall()
 for (i from 1 to |V|)
 for (j from 1 to |V|)
 if (edge(i,j) exists)
 dist[i][j] ← costſi,jƀ
 next[i][j] ← j
 else
 dist[i][j] ← infinity
 next[i][j] ← null

 for (k from 1 to |V|)
 for (i from 1 to |V|)
 for (j from 1 to |V|)
 if (dist[i][j] > dist[i][k] + dist[k][j])
 dist[i][j] ← dist[i][k] + dist[k][j]
 next[i][j] ← next[i][k]

function ReconstructPathſint i, int jƀ → List<int>
 if (next[i][j] = null)
 return null
 List<int> path = {u}
 while ſu ≠ vƀ
 u ← next[u][v]
 path.add(u)
 return path

C. A*

A* is implemented here using a general node data structure.

class Node
 public List<Point> path
 public Point curr_point
 public int cost
 public int heuristic
 public int total

 public Node()
 curr_point ← origin
 path ← {curr_point}
 cost ← 0
 heuristic ← ManhattanDistanceſorigin, destƀ
 total ← cost + heuristic

public Node(NaiveNode parent, Point next_point,
 int add_cost)

 curr_point ← next_point
 path ← parent.path + {curr_point}
 cost ← parent.cost + add_cost
 heuristic ← ManhattanDistanceſpath.last, destƀ
 total ← cost + heuristic

1) A* Without Visibility Graph

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Without a visibility graph, A* finds a path using all tiles in
the map as nodes. Each pair of adjacent tile is considered an edge
with weight 1.

function aStarſƀ → direction
 PriorityQueue<Node> alive_nodes
 curr_node ← new Nodeſƀ
 alive_nodes.enqueue(curr_node)

 while ſcurr_node.curr_point ≠ destƀ
 for (each cardinal direction)
 Point adj_point ← curr_point moved 1 tile
 if (isAccessible(adj_point)
 if not(curr_node.path.contains(adj_point))
 alive_nodes.enqueue(new Node(curr_node,
 adj_point, 1)
 curr_node ← alive_nodes.dequeue()

→ direction from origin to curr_node.path[1]

The above algorithm returns a direction to be used by a
controller moving a unit.

While simple, checking every tile in a map is costly both in
terms of computation and memory. For example, pathfinding in
a 50 * 25 map means that there are up to (50 * 25) = 1250
vertices and (50 * 24) + (49 * 25) = 2425 edges to be explored.

2) A* With Visibility Graph
The visibility graph only contains junctions, while either or

both origin and destination points can be located arbitrarily.
Before pathfinding with visibility graph, both origin and
destination points must be added to the visibility graph.

procedure addPointToGraph(input/output Graph g,
 input Point p)
 if (g.hasNode(p))
 // do nothing
 else
 for (each cardinal direction)
 Point q ← p
 do
 q ← q moved 1 tile
 while (isAccessible(q) and not(g.containsKey(q)))
 if (isAccessible(q))
 g.addEdge(p, q, direction, distance(p, q))
 g.addEdge(q, p, reversed direction,
 distance(p, q))

With a visibility graph, A* finds a path only using the

junctions in the map and the origin and destination points.

function aStarWithVisibilityGraphſGraph gƀ → direction
 PriorityQueue<Node> alive_nodes
 curr_node ← new Nodeſƀ
 alive_nodes.enqueue(curr_node)

 while ſcurr_node.curr_point ≠ destƀ
 Point u ← curr_node.curr_point
 for (each neighbor v of u)
 if not(curr_node.path.contains(v))
 alive_nodes.enqueue(new Node(curr_node, v,
 distance(u, v))
 curr_node ← alive_nodes.dequeueſƀ

 → direction from origin to curr_node.path[1]

Pathfinding with a visibility graph drastically reduces the
number of vertices to check. As the number of junctions in a map
is a fraction of the total number of tiles in a map, pathfinding
with a visibility graph is noticeably faster than pathfinding
without a visibility graph.

Optionally, after every few path calculations, non-junction
previous origin and destination nodes should be removed to
prevent bloat on the visibility graph.

3) A* With Visibility Graph And Precomputed Paths
Using the Floyd-Warshall algorithm, the number of vertices

to check can be reduced to only at most six vertices: the origin
(0), two vertices in the visibility graph closest to the origin (1,
2), two vertices in the visibility graph closest to the destination
(3, 4), and the destination (5).

Fig. 7. Graph illustration for pathfinding with visibility graph and
precomputed paths

Source: author

If the origin is located on a junction, vertices 0, 1, and 2 can
be collapsed into one vertex representing the origin. Likewise, if
the destination is located on a junction, vertices 3, 4, and 5 can
be collapsed into one vertex representing the destination.
Therefore, the pathfinding graph has at least two vertices and
one edge and at most has six vertices and eight edges.

Because the above graph is simple, instead of using the
visibility graph for pathfinding, a new graph composed of the
aforementioned vertices can be generated every path calculation.
The weight of edges between vertices 1, 2, 3, and 4 are obtained
from the minimum cost calculated previously with Floyd-
Warshall, while the weight of edges from 0 and to 5 are simply
the horizontal or vertical distance to the nearest junctions.

Graph vg // Visibility Graph

function minDist(Point u, Point vƀ → Point
 → minimum distance from u to v using Floyd-Warshall

function dirſPoint u, Point vƀ → direction
 → direction from u to reconstructPathſu, vƀ[1]

function generateGraph() → Graph
 Graph g
 g.addNode(origin)
 g.addNode(dest)

 if not(vg.hasNode(origin))
 for (each neighbor u of origin)
 g.addNode(u)
 if not(vg.hasNode(dest))
 for (each neighbor v of dest)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

 g.addNode(v)

 for (point u in each node in g)
 for (point v in each node in g)
 if (vg.hasNode(u) and vg.hasNode(v))
 g.addEdge(u, v, minDist(u, v), dir(u, v))
 else
 if (u = origin and v is neighbor of origin)
 g.addEdge(u, v, distance(u, v),
 direction from u to v
 else if (u is neighbor of dest and v = dest)
 g.addEdge(u, v, distance(u, v),
 direction from u to v
 → g

The path can then be calculated using the generated graph.

function aStarWithFloydWarshallſGraph gƀ → direction
 PriorityQueue<Node> alive_nodes
 curr_node ← new Nodeſƀ
 alive_nodes.enqueue(curr_node)

 while ſcurr_node.curr_point ≠ destƀ
 for (each neighbor v of curr_node)
 if not(curr_node.path.contains(v.curr_point))
 alive_nodes.enqueue(new Node(curr_node,
 v.curr_point, g.edge(u, v).distance)
 curr_node ← alive_nodes.dequeue

 → direction from origin to curr_node.path[1]

Pathfinding with both visibility graph and precomputed
paths is significantly faster than pathfinding with only visibility
graph, as there are at most 6 nodes and 8 edges to go through.

IV. EXPERIMENT

A. Setup

The above algorithms are implemented in C# for testing
purposes.

Testing is done on the following 50 * 25 map. Dots (‘.’)
represent accessible tiles, while pounds (‘#’) represent
inaccessible tiles. Initial origin point is marked by S in point (1,
48), while initial destination point is marked by E in point (48,
1).

Paths are recalculated every time the origin point moves 1
tile. To simulate moving destinations, the destination point is
moved back and forth between points (48, 1) and (47, 1).

The pathfinding tests measure the time needed for the origin
and the destination to have the same coordinates. Visibility
graph generation and all-pair shortest-path computation also
have their execution times measured.

The order in which algorithm testing is done on is as follows:
visibility graph generation, all-pair shortest-path computation,
pathfinding without visibility graph, pathfinding with visibility
graph, and pathfinding with precomputed shortest path. Each of
the five algorithms are tested 100 times to retrieve the average
running time.

B. Results

The generated visibility graph is as follows. Blank spaces
represent inaccessible tiles, dots represent accessible tiles, and
pounds represent junctions associated with each vertex in the
visibility graph.

50 25

#..........###..........##..........###.........E#
#.###.####.###.####.###....###.####.###.####.###.#
#.......................##.......................#
#.###.##.###.###.##.###.##.###.##.###.###.##.###.#
#.....##.###.###.##.....##.....##.###.###.##.....#
#####.##.........##.##########.##.........##.#####
#####.##.###.###.##.##########.##.###.###.##.#####
#........#.....#........##........#.....#........#
#####.##.#######.##.##########.##.#######.##.#####
#..#
#.###.####.#.#.####.###.##.###.####.#.#.####.###.#
#...#...............#...##...#...............#...#
###.#.##.###.###.##.#.######.#.##.###.###.##.#.###
###.#.##.###.###.##.#.######.#.##.###.###.##.#.###
#.....##...#.#...##............##...#.#...##.....#
#.###.####.#.#.####.###.##.###.####.#.#.####.###.#
#.###.####.....####.###.##.###.####.....####.###.#
#..........###..........##..........###..........#
#.###.####.###.####.###.##.###.####.###.####.###.#
#.......................##.......................#
#.###.##.###.###.##.###.##.###.##.###.###.##.###.#
#.###.##.###.###.##.###....###.##.###.###.##.###.#
#S......................##.......................#

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

The statistics of each test are described in the following table.
All units are in milliseconds.

TABLE I. STATISTICS FOR EACH TEST

Test Mean Stdev Range Min Max

Visibility

Graph
16.08 1.606049171 7 14 21

Floyd-

Warshall
88.32 2.352217952 15 86 101

A* w/o VG 3201.32 108.7941138 742 3113 3855

A* w/ VG 328.45 6.609413244 45 310 355

A* w/

precomputed
15.18 3.833346509 17 13 30

V. ANALYSIS

A. Analysis

As seen above, pathfinding without a visibility graph takes
an average of 3 seconds to complete. Pathfinding with a
visibility graph takes an average of 328ms to complete with an
overhead of 16ms for visibility graph generation. Pathfinding
with precomputed paths takes an average of 15ms, with an
overhead of 104ms for both visibility graph generation and
shortest-path precomputation.

Pathfinding with precomputed shortest paths are more than
200 times faster than pathfinding without a visibility graph and
20 times faster than pathfinding with only a visibility graph. The
overhead of 104ms is even smaller than the average time taken
for pathfinding with only a visibility graph.

Because there is no possibility of suboptimal paths produced
if the algorithm is implemented correctly, there is no drawbacks

on using pathfinding with precomputed paths beside negligibly
longer loading times.

Note that the pathfinding results here are made from repeated
calculations every step taken. If there is no need for repeated
pathfinding (i.e. static destination), a single session pathfinding
without a visibility graph and all-pairs shortest-path
computation is faster.

B. Possible Improvements

The map used in the experiment here does not contain any
rooms. This is because the visibility graph generation algorithm
described above only works with 1-tile wide corridors and
would treat each tile in a room as a junction, which is
unnecessarily expensive, especially for large open spaces. A
room detection algorithm can be added to the basic algorithm
above for a more general performance.

For maps with large open spaces instead of narrow corridors,
a more suitable pathfinding algorithm would be Rectangular
Symmetry Reduction and Jump Point Search, which cuts down
symmetrical paths found on basic A*.

Fig. 8. Jump Point Search
Source: Rune de Groot

The pathfinding algorithms implemented here recalculate its
path every time the origin or destination moves, which
wastefully discards most of the path information produced by
the algorithms. Furthermore, because most of the information
required for pathfinding is precomputed, both the visibility
graph and the precomputed shortest paths may be invalidated
with minor changes to the map.

Variants of A*, such as Dynamic A* (D*) and Lifelong
Planning A* (LPA*). D* is intended to for A* without complete
information; if A* makes mistakes, D* can correct A* without
taking too much time. LPA* is intended for changing costs;
while A* is invalidated when the map changes, LPA* can use
previous A* computations to generate a new path. However,
both D* and LPA* requires large amounts of memory, making
it unsuitable if there are a lot of moving units.

VI. CONCLUSION

To improve efficiency in uniform-cost grid-based
pathfinding, the map can be preprocessed to produce both a
visibility graph and precomputed shortest paths from all pairs of
vertices. This frontloads the cost of repeated pathfinding,
making the actual pathfinding much faster. In addition, both
visibility graph generation and shortest path precomputation is
relatively cheap in terms of computation.

 #...#....# #....#...# #...#....# #....#...#
 #..#
 #...#..#.#.#.#.#..#...# #...#..#.#.#.#.#..#...#

 #...# . . . #...# #...# . . . #...#
 . #...#...# . . #...#...# .

#..# ..#.. #..#.... #..# ..#.. #..#....

 #...#..#.#.#.#.#..#...#..#...#..#.#.#.#.#..#...#

 #.# #..#.#.#.#.#..# #.# #.# #..#.#.#.#.#..# #.#

 #.#.# #.# . #.# #.#.#..#.#.# #.# . #.# #.#.#

 . . #.#.# #.#.# . .
 #...#....# #....#...# #...#....# #....#...#

 #...#..#.#.#.#.#..#...# #...#..#.#.#.#.#..#...#

 #..#
 #...#..#...#...#..#...# #...#..#...#...#..#...#

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Other algorithms to improve pathfinding exists, most
notably by changing the pathfinding algorithm itself. Combined
with the techniques discussed in this paper, the cost of the
pathfinding process can be made even cheaper as to be viable
for real-time pathfinding.

ACKNOWLEDGMENT

The author would like to express his deepest gratitude and
appreciation to Drs. Nur Ulfa Maulidevi, Masayu Leylia
Khodra, ST., MT., and Dr. Ir. Rinaldi Munir, MT. as the lectures
of IF2211 Strategi Algoritma. Appreciation is also given to his
parents, who have given him moral and material support for this
paper, as well as classmates in IF2211 K2 who gave moral
support and contributed ideas for this project.

REFERENCES

[1] R. Munir, Diktat Kuliah Strategi Algoritma, 2nd ed. Bandung: Institut
Teknologi Bandung, 2009.

[2] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to

Algorithms, 1st ed. Cambridge, Massachusetts: The MIT Press, 2014, pp.
684-707.

[3] A. Levitin, Introduction to the Design & Analysis of Algorithms, 3rd ed.
Boston, Massachusetts: Pearson, 2012, pp. 304-310, 333-337.

[4] A. Patel, “Amit’s A* Pages”, theory.stanford.edu, 2017. [Online].
Available:

http://theory.stanford.edu/~amitp/GameProgramming/index.html.
[Accessed: 14- May- 2017].

[5] ”Floyd-Warshall algorithm”, Programming-algorithms.net, 2017.
[Online]. Available: http://www.programming-
algorithms.net/article/45708/Floyd-Warshall-algorithm. [Accessed: 15-
May- 2017].

[6] Z. Abd Algfoor, M. Sunar and H. Kolivand, “A Comprehensive Study on
Pathfinding Techniques for Robotics and Video Games”, International
Journal of Computer Games Technology, vol. 2015, pp. 1-11, 2015.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini
adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari
makalah orang lain, dan bukan plagiasi.

Bandung, 17 Mei 2017

Felix Limanta 13515065

