
The Use of Backtracking Algorithms in
Attempt to Solve Picross Puzzle

Vincent Hendryanto Halim / 13515089
Program Studi Teknik Informaitka

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13515089@stei.std.itb.ac.id
vincenthendrha@gmail.com

Abstract—This writing defines ways to solve picross puzzle

using exhaustive search and the backtracking algorithm.
Exhaustive search algorithm are done using combinatorics on the
solution set, while backtracking algorithm selects the feasible
solution on each row to create the solution for the whole picross
puzzle. The result of backtracking and exhaustive search
algorithms are then compared with the result that backtracking
has the best solve time than exhaustive search because of the
number of iteration needed.

Keywords—puzzle; picross; backtracking; exhaustive search

I. INTRODUCTION
Puzzle games are a kind of games that require one’s thinking

skill to solve the game. During the age of technology, many
puzzle games evolved into the form of video games to fit so that
puzzle games can still exist in this age. There are many kinds of
puzzle games, such as Tetris, Minesweeper, and the one that’ll
be discussed, Picross.

Picross is a puzzle game originated from japan that utilizes
the form of grids in the form of the game. Picross requires player
to mark specific tiles in the grid using the rule defined to form a
picture from the marked tiles so that the marked tiles doesn’t
violate the constrain on each row and column. Picross has many
variations, for example, the multi-colored Picross, the one-
colored Picross, or the 3D Picross. The variance between Picross
puzzles affects the rules of the picross puzzle iself. Due to those
variations, the Picross that will be used in this writing to utilize
backtracking is the one-colored Picross.

Picross puzzles are constraint satisfaction problems as
defined by the row and column constraint on each row and
column. Moreover Picross puzzles have almost the same
characteristics with the n-queen problem in terms of placing
without violating the constrain. Therefore, the writer chooses
backtracking algorithm to solve the puzzle.

Through this writing, the writer will attempt to explain the
use of backtracking and exhaustive search to solve Picross
puzzles, by forming the backtracking algorithm and exhaustive
search algorithm used using pseudocodes and the
implementation of the backtracking algorithm.

II. THEORIES ON BACKTRACKING
Backtracking algorithm is an algorithm that returns to the

previous step. If the current path of step followed doesn’t lead
to a solution, the algorithm will return to the previous step to
try another solution and fails the step. This algorithm is
basically the same as the Exhaustive Search algorithm, except
Backtracking has pruning function that helps optimize the
algorithm.

In backtracking, there are some primary components in
order to create the algorithm :

1. Solution
The solution is expressed by vector of n-tuple: X = (x1, x2,

..., xn), xi ∈Si.
2. Generation Function of Xk

Generation Function is expressed by the expression T(k).
T(k) generates values for the solution.

3. Bounding Function
Bounding Function is expressed by the expression B(x1, x2,

…, xk). Bounding function is the function that bounds the path
if the path doesn’t lead to the solution. Due to that fact,
Bounding function would return a true value if the current path
checked leads to a solution

The generated solution from bactracking algorithm is

expressed into a state space tree. A tree structure is a collection
of nodes and vertex that is connected, and doesn’t have a circuit.
Thus, space state tree is a tree structure that contains all the state
possible of a problem as nodes.

Later on, the algorithm will try to explore the state space
tree in a depth-first-search-like algorithm. Then the bounding
function will check if the state will lead to a solution. If the
current state doesn’t lead to a solution, the state will be cut-off
by the bounding function, preventing it to be explored further.

Backtracking algorithm can be defined as a recursive
algorithm. The pseudocode for a recursive backtracking
algorithm is defined in below

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

function backtrack(move taken)  boolean

Variables:
r : array of array of integer

Algorithm:
if(move is solution){
 true

}
else{

for (every possible move)
if(backtrack(move))
 true

endif
endfor
 false

endif

In the recursive part of the backtrack algorithm, it tries every

single possible move, and if the move isn’t possible, it returns
a false value. Thus backtracking to the caller.

III. THEORIES ON BRUTE FORCE
Brute force algorithm is a method to solve a problem based

on the problem statement and the concept definition.
This algorithm is easy to comprehend and will basicly solve

any problem, however in some cases, brute force algorithm is a
slow algorithm, thus is not acceptable.

A. Exhaustive Search
Exhaustive search is a solution-searching technique using

bruteforce by generating a solution and evaluates it using the
solution’s rule.

This method usually involves the problem that uses
combinatorics or subset to solve their problems with a clear rule
on how to evaluate the answer.

Exhaustive search can be divided into 3 parts in general :
1. Enumeration (list) of solution

The solution is listed by either using combinatorics or listing
the subset of a set

2. Evaluation of solution’s feasibility
The selected solution is then evaluated by using the

evaluation function defined by the problem or by the constraint
that is set by the problem

3. Output of the best solution

Generally the pseudocode for exhaustive search is defined
below :
function exhaustiveSearch()solution

while(!solution) do
 //Generate Solution
 //Evaluate the Solution
solution

IV. THE PICROSS PUZZLE

A. Rules of The Game
Picross is a puzzle game that uses the form of grids in the

gameplay of the game. Tiles in the grids has to be colored
following clues in order to form a picture in the grid.

The clues for each row and column are written on the side
of the rows and on top of columns specifying how many
unbroken lines of colored squares there are in the row or
column.

Another rule is every unbroken line has to have at least an
empty tile separating it from the other unbroken line. Thus
prevents the same meaning between, for example the “1 2” rule
and “3” rule.

Figure 1. Example of a row

If there is one number for the clue with the number n, it

means that the row/column will only have one unbroken line
with the length of n tiles. From the example in Figure 1, the
number 2 means that there is one unbreakable line with length
of two tiles, and thus can be placed like the rest 6 column.
Consequently the number 0 on a column or row, means that the
row/column is empty.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Figure 2. Example of a multi-line row

If there are more than one number on a row/column, it

means that the row/column is going to have a number of
unbroken lines in the column. For example, in Figure 2 above ,
the number “1 2 4” in the side of the column, means that there
will be 3 unbroken lines in the respective column or row, each
consisting of one, two, and four tiles, with at least one space
between each line.

Figure 3. Example of a completed Picross Puzzle

The figure above is an example of a complete picross puzzle

for each columns and rows follows the clues on the respective
columns and rows. (i.e. the second column has one unbroken
lines, consisting of 5 tiles; the fifth column has 3 unbroken
lines, each consisting of one tile).

V. EXHAUSTIVE SEARCH ALGORITHM IN SOLVING PICROSS
The bruteforce algorithm or exhaustive search for solving

picross only utilizes the properties of combinatorics in order to
solve the puzzle and evaluation of solution after generating. In
general the pseudocode is as defined below

A. Enumeration of Solution
Enumeration of Solutions is done by using permutation to

generate the solution for each row by first, inserting the blank
lines as lines with the length of 1 so that the total length of the
row is the same as the width. After that, the permutation is
invoked.

B. Evaluation of Solution’s feasibility
The solution is checked by matching the solution with the

column constraint, since the solution is generated based on the
row constraint. The column constraint is checked by
enumerating all the unbroken lines on a row with their length.
If the number of unbroken line and their length matches the
column constraint, then the column constraint on that column is
fulfilled. Furthermore, if all the column of the solution matches
the column constraint, then the solution is correct.

C. Pseudocode Implementation
The implementation for the exhaustive search algorithm is

defined in the pseudocode below

function solvePicross(P: Picross)  Solution
//Declaration
S : solution

//Algorithm
while not(solution_correct(S))

for each row
S  generate_row_solution()
//Generates a solution that satisfies the

constraint
endfor

check_solution
if (solution) then

solution_correct  true
endif

endwhile

 S

The solution will be defined as a list of list of integer data

type. On every row the solution is a list of integer where the
unbroken line starts. For example, the solution set of the after
generation is {0, 3, 5}. After generating the solution, then the
solution is represented into an array for each row forming a
matrix, such as in Figure 4.

Figure 4. Example of a row

VI. BACKTRACKING ALGORITHM IN SOLVING PICROSS
This backtracking algorithm focuses heavily on creating a

permutation based on the constraint created. To define the
backtracking algorithm used in Picross Solver, the basic
components of backtracking algorithm had to be defined.

A. Solution Set
To find the solution set to picross puzzles, let the solution

for each row be a set of numbers where an unbroken line starts
starting from 0 just like the solution for the exhaustive search
method to help in creating the permutation. After generating the
permutation, the solution is then represented in matrix (array of
array of integer) to ease the solution checking.

B. Generation Function
The generation function’s goal in this problem is to generate

a sequence for each row, so that the constraint of the row will
still be satisfied. The generation of sequence can be done using

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

combinatorics or using another backtrack algorithm. The
generation function is easier done using the feature of next
permutation.

C. Bounding Function
Since the generation is done per row, the bounding function

used in the solver is whether the current solution satisfies the
column constraint by checking the content of the column. If the
content of the column is in the column constraint, then the
column satisfies the constraint.

The column constraint is checked by using the steps below

1. Count the length of unbroken lines in a column until
it reached the end of the column or the last generated
row

2. If the unbroken line counted is incomplete, ignore the
unbroken line; else add the length to an array

3. Check whether the array (filled with the unbroken
line length) is a subset of the respective column’s
column constraint. If it is, then the soluton satisfies
the column constraint.

There is also a row constraint that must be checked, that is
the spacing between lines. It can be achieved by the same
method or just by checking the generated row at the start.

D. Pseudocode Implementation
Like the exhaustive search implementation, the class for the

picross should be defined as in the pseudocode below
class Picross
 constraintRow : array of list of integer
 constraintCol : array of list of integer
 width : integer
 height : integer
 viewTable : array of array of integer

The backtracking algorithm for picross solver is
implemented as a method in the Picross class and can be seen in
the pseudocode below

function Solve(i:integer)  boolean

Variables:
r : array of array of integer

Algorithm:
if(i == height){
 true

}
else{

for (all permutation of i-row constraint)
if(rowOK(c)andcolumnOK(c)andSolve(i+1))
 true

endif
endfor
clearRow(i)
 false

endif

In the algorithm above, the recursive definition of the

picross solver was written. The recursive function checks all the
permutations of the row constraints. After generating a
permutation, then the algorithm would check the row
constraints and the column constraints.

The row constraint is checked by checking the space
between unbroken lines. If there are more than one space or one
space between all the unbroken lines then the row constraint is
satisfied.

The column constraint is checked by checking all the
column’s unbroken lines. If the contents of the current column
is the subset of the column constraint, then the column
constraint is satisfied.

If all of the constraint is satisfied, then the next row would
be checked, and invoked by using the recursive Solve(i+1) that
indicates checking for the next row.

As for the basis, the recursive function would return true if
i equals the value of height, indicating that all the row has been
checked. Since the value of i increases in each recursive calls
on a successful row check, i having the same value as height
would mean that all the row have been checked.

VII. ANALYSIS OF ALGORITHM

A. Difference between Backtrack and Exhaustive Search
The backtrack algorithm doesn’t differ much from the

exhaustive search, since backtrack is the optimized version of
exhaustive search. However, in backtrack, the solutions are
checked and accepted/rejected after generating the solutions for
each row. Because of that, the backtrack algorithm gives a faster
solve time than exhaustive search.

B. Implementation and Testing
For testing purpose of the algorithm, three picross puzzle, a

3x3 5x5 and 10x10 in the figure below is used as a testcase to
measure the quality of the code.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Figure 5. Sample Picross Puzzle

(Source :logicpicwalkthrough.blogspot.com)

Using the sample 5x5 and 7x7 and 10x10 puzzle above and
the algorithm from the pseudocode defined in the previous
section written in JAVA, the result below, which is the same as
the solution is achieved.

 11
11 1
1111
1 1
1 1
Time taken :20ms
Branch Created :4384

 1 11
 11 1
 111
 111111
1111111
111111
 11 1
Time taken :2400ms
Branch Created :12718635

1111
111111
1111111111
111111
111111
1111111
111111
111111
111111
1111
Time taken :0ms
Branch Created :10

From the test cases above, it can be inferred that the amount

of time used to solve the picross puzzle is still big. This
happened because of the permutation used and the difficulty of
the puzzle.

In general, the bigger the puzzle, the bigger the state space
tree that will be generated. Solving 5x5 puzzle would generate
a smaller state space tree than solving a 10x10 puzzle.
Consequently, a larger puzzle would take a longer time to solve
the puzzle. Note that the puzzle size is actually affected by the
row size, since the permutation calculation only considers the
row constraint.

The content of the row would also define the time taken to
solve a picross puzzle. Rows with a lot of constraints would
result in a higher number of permutations. Consequently, it
increases the amount of time taken to solve the puzzle

Moreover, for puzzles whose ‘s permutations generated at
the end would take a longer time to complete. Since the branch
created would be a lot. This can be seen in the third example.
Since the generation algorithm passes all the bounding function
from the start, the branch passes all the test and thus resulting
in a faster solve time despite the size of the puzzle. Failing all
cases except the first, can result to the backtrack algorithm
backtracks to the first state and makes waste of all the state that
have been generated.

The time consumed can also be caused by the standart
permutation algorithm in the library used that has a big
complexity, thus contributes in the high amount of time to solve
the puzzle.

Despite all of that, the backtracking algorithm is still usable
in cases of small picross puzzles.

VIII. CONCLUSION
Backtracking is the optimized version of exhaustive search.

However, there is still a slight possibility that the algorithm
itself doesn’t differ much from exhaustive search.

In the example of this Picross Solver, it still takes a long
time to produce the result despite having functions to reduce the
generation of nodes because the algorithm depends on the final
result of the puzzle. If the puzzle’s result is close to the starting
permutation than the algorithm will perform well.

ACKNOWLEDGMENT
The author thanks to God for giving inspirations and time to

make this writing, thus the author could finish this writing.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Other thanks are given to the author’s friend for giving
inspiration about the Picross game which we played during our
times in high school.

REFERENCES
[1] Rinaldi Munir, Diktat Kuliah IF2211: Strategi Algoritma. Bandung:

Program Studi Teknik Informatika Sekolah Teknik Elektro dan
Inforrmatika Institut Teknologi Bandung. 2009

[2] http://stackoverflow.com/questions/2799078/permutation-algorithm-
without-recursion-java (accessed at May, 18 2017)

[3] logicpicwalkthrough.blogspot.com (accessed at May, 18 2017)

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 18 Mei 2017

Vincent Hendryanto Halim – 13515089

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

http://stackoverflow.com/questions/2799078/permutation-algorithm-without-recursion-java%20(accessed
http://stackoverflow.com/questions/2799078/permutation-algorithm-without-recursion-java%20(accessed

	I. Introduction
	II. Theories on Backtracking
	III. Theories on Brute Force
	A. Exhaustive Search

	IV. The Picross Puzzle
	A. Rules of The Game

	V. Exhaustive Search Algorithm in Solving Picross
	A. Enumeration of Solution
	B. Evaluation of Solution’s feasibility
	C. Pseudocode Implementation

	VI. Backtracking Algorithm in Solving Picross
	A. Solution Set
	B. Generation Function
	C. Bounding Function
	D. Pseudocode Implementation

	VII. Analysis of Algorithm
	A. Difference between Backtrack and Exhaustive Search
	B. Implementation and Testing

	VIII. Conclusion
	Acknowledgment
	References

