
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Optimization of Boyer-Moore-Horspool-Sunday

Algorithm

Rionaldi Chandraseta - 13515077
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung

Bandung, Indonesia

rionaldi.chandraseta@gmail.com

Abstract—String matching is an important aspect in

Computer Science. From search engines to bioinformatics,

string matching algorithm is crucial in these fields. One of the

widely used algorithm for string matching is the BM (Boyer-

Moore) algorithm which dated back to 1977. Forty years

later, improvements have been made for the BM algorithm,

namely the BMH (Boyer-Moore-Horspool) algorithm and the

BMHS (Boyer-Moore-Horspool-Sunday) algorithm. This

paper will analyze the difference between Boyer-Moore

algorithm and its improvements and present an optimization

toward the BMHS algorithm.

Keywords—Boyer-Moore, Boyer-Moore-Horspool, Boyer-

Moore-Horspool-Sunday, Optimization, String Matching

I. INTRODUCTION

Published in 1977, the BM (Boyer-Moore) algorithm is

named after its founder, Robert S. Boyer and J Strother

Moore. It is still an efficient string searching algorithm, and

considered as the benchmark of string searching.

BM preprocesses the pattern that would be searched.

This algorithm also brings a new perspective in string

matching algorithm. Instead of processing the searched

pattern from left to right, BM started the process from right

to left. The unique approach is done to accommodate one

of the shift rules in the algorithm, the good suffix rule as

stated in reference [1].

Unfortunately, the good suffix rule is quite complex,

both in concept and implementation. In 1980, Nigel

Horspool proposed a simplified BM algorithm which does

not require the good suffix rule. Reference [2] states that

the tests done by Horspool show no significant differences

between the original BM algorithm and the algorithm now

known as BMH (Boyer-Moore-Horspool).

Ten years later, Daniel M. Sunday further improved the

BMH algorithm. In reference [3], Sunday proposed that the

shift amount is determined by the first character to the right

of the text being processed. This caused the BMHS (Boyer-

Moore-Horspool-Sunday) algorithm to be able to jump

further than BMH, resulting in fewer comparisons and

faster execution time.

The case of BMHS being faster than BMH and BM on

average is true, but the BMH and BMHS algorithm would

produce a really bad result compared to BM, both in

number of comparisons and execution time, on certain

cases. This is the consequence of removing the good suffix

rule from calculations. On worst cases, the BMH and

BMHS algorithm perform badly, in fact comparable to

brute force algorithm. Thus, the need of an optimization to

overcome the worst case scenario is needed.

II. THEORY

A. Boyer-Moore Algorithm

The BM algorithm commonly refers to the pattern being

searched as “needle” and the text in which the pattern is

searched as “haystack.” Unlike other common string

matching algorithm, BM goes against the normal intuition

of matching the string from left to right. The needle is lined

up with the haystack, and the matching process starts at the

end of the needle. The algorithm continues comparing each

character toward the front end of the needle. If a mismatch

occurs, the needle would be “shifted” right. The shift value

depends on the BM shift rules.

The algorithm has two shift rules, both values are

predetermined in preprocessing state. First shift rule is

called the Bad Character rule, and the second rule is called

the Good Suffix rule.

The bad character rule uses a last occurrence table. The

table contains the index where each character last occurred

in the needle.

TABLE 1 Last occurrence table of the pattern "foxtrot"

 pattern: foxtrot

Character f o x t r

Last Index 0 5 2 6 4

The good suffix rule uses a jump table generated from

preprocessing the pattern. It is quite a complex concept, but

helps eliminating common worst case scenario for BM

algorithm. Basically, the algorithm searches for

reoccurring substring in the needle. In the case of a

mismatch, the algorithm could jump over the similar

substring, reducing the number of comparisons.

TABLE 2 Jump table of the pattern "foxtrot"

 pattern: foxtrot

Iteration 0 1 2 3 4 5 6

Jump 1 3 7 7 7 7 7

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Note that iteration 0 in Table 2 indicates the jump value

if mismatch occurred at the first matching process, which

is the last character in the pattern (“T”), Index 1 is for when

the mismatch occurred at the second matching process,

(“OT”), and so on.

A mismatch on iteration 0 (the rightmost character in the

needle) would generate a jump value of 1, this is because

there is no suffix to be analyzed. The algorithm tries to find

the first character to the left that is not the rightmost

character, i.e. the pattern “ADD” have a jump value of 2 on

iteration 0 because of the repeating “D” at the end of the

string. The jump value of 2 ensures the next checked

character is different than “D” that is known to be a

mismatch.

While processing iteration 1, the algorithm assumes that

the last character in the pattern matches correctly, thus the

good suffix is “T”. Then, it searches for the nearest

substring to the left containing “_T” where “_” is a random

character except the character on index 1, which is “O”. In

this particular case, the string “foxtrot” does have a

recurring suffix. The substring “OT” and “XT” both has

the suffix “T” with different first character. Hence, jump

value of iteration 1 is the distance between “O” and “X”

which equals 3.

Iteration 2 to 6 in Table 2 are filled with 7, which is the

needle length. This is because the process could not find

any reoccurring substring of “_OT”, “_ROT”, “_TROT”,

and so on.

Based on reference [1], the string matching process

would match the needle from right to left. In the case of a

mismatch, the BM algorithm considers both shift rules,

select the larger value, and shift the needle accordingly.

The algorithm returns the text index where the needle

successfully matched until the leftmost character, or -1 if

no match is found.

TABLE 3 An example of BM algorithm matching process, 4 shifts, 14 comparisons

B. Boyer-Moore-Horspool Algorithm

BMH uses the same core principle as BM in the

matching process. However, BMH does not use the good

suffix rule on calculating the shift value. The algorithm

depends solely on a modified last occurrence table.

The last occurrence table is generated based on every

character in the needle, with an exception for the last

character. By doing this, if the last character only occurs

once, the shift value is equal to the needle’s length. If the

character is present elsewhere on the pattern, it would be

shifted according to the last occurrence index.

Another main difference between BM and BMH is the

way they use the last occurrence table. The original BM

calculates the jump value based on the character in the

haystack that causes mismatch. In BMH, the jump value is

always calculated based on the character of the haystack

that is aligned with the rightmost character of the needle as

stated in reference [2].

The idea behind the algorithm is that if a mismatch

occurred, the needle would be shifted right along the

haystack. So, if a mismatch occurred, shifting the needle

based on only the rightmost aligned character of the

haystack would not skip over a possible match as it is

checked after the shift.

Sometimes the calculated shift value is less than the shift

value of BM, causing a longer search time due to more

comparisons needed. But, on average case, the BMH

algorithm is on par with BM. Do put in mind that the

implementation of BMH is simpler than BM that uses the

good suffix rule.

TABLE 4 An example of BMH algorithm matching process, 5 shifts, 16 comparisons

 J U L I E T T H O T E L T A N G O F O X T R O T

1 F O X T R O T

2 F O X T R O T

3 F O X T R O T

4 F O X T R O T

5 F O X T R O T

 J U L I E T T H O T E L T A N G O F O X T R O T

1 F O X T R O T

2 F O X T R O T

3 F O X T R O T

4 F O X T R O T

5 F O X T R O T

6 F O X T R O T

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

C. Boyer-Moore-Horspool-Sunday Algorithm

Like the BMH, the BMHS also abandons the good suffix

rule, and uses only the last occurrence table. Yet, unlike the

BMH, the BMHS uses the original last occurrence table

which does not exclude the last character of the needle.

The idea behind BMHS algorithm is pretty much the

same as BMH, if a mismatch occurred, then the needle

would have to be shifted to the right. BMHS literally takes

this idea one step ahead.

BMH algorithm calculates the shift based on the text

character aligned with the needle’s rightmost character.

Meanwhile, BMHS algorithm calculates it based on the

character exactly one position to the right of the text

character aligned with the needle’s rightmost character.

The jump value is calculated based on the last occurrence

of that character.

The BMHS algorithm allows a maximum jump of

needle’s length + 1, making it able to do larger jumps

compared to BM and BMH. Unfortunately, because the

BMHS algorithm uses the character that is positioned

exactly one after the pattern’s rightmost character, the

generated jump value could be less than BM and BMH. In

the case where the character that is checked by BMHS

exists in the pattern, and the mismatch happened on the

rightmost character of the pattern, BMH would generate a

larger jump value.

TABLE 5 An example of BMHS algorithm matching process, 3 shifts, 11 comparisons

III. WORST AND AVERAGE CASE OF BM-BMH-BMHS

Based on Table 3 and Table 5, it could be inferred that

on average case, BMHS is more efficient than regular BM.

BMHS has a larger maximum jump, and it results in fewer

shifts and fewer comparisons in general.

However, BMHS abandoned the concept of good suffix

that is present on the original BM algorithm. This causes

the BMHS to have a very bad worst case scenario, which

is in fact comparable to a brute force algorithm.

TABLE 6 An example of finding the pattern "ABBBB" with BM

 B B B B B B B B B B

1 A B B B B

2 A B B B B

TABLE 7 An example of finding the pattern "ABBBB" with BMHS

 B B B B B B B B B B

1 A B B B B

2 A B B B B

3 A B B B B

4 A B B B B

5 A B B B B

6 A B B B B

In Table 6, the BM algorithm only needs to shift 1 time

and compare 10 characters to check the string and to know

that there is no match for the pattern “ABBBB”. On the

other hand, from Table 7, the BMHS algorithm needs to

shift 5 times and performs 30 comparisons before

determining that the pattern does not exist in the string.

The BM algorithm uses the good suffix rule to figure out

that the pattern does not have other occurrence of

“_BBBB” and generated a jump value of 5. While the bad

character rule generates a jump value of 1, the algorithm

would select the larger jump value, which is 5.

BMHS however, does not have access to the good suffix

rule. The first matching process would fail at text index 0.

The algorithm calculates the jump value based on the

character at text index 5, which is “B”, and this would

return the value of 1. This also applies for the next

processes after the shifts. Because the mismatch occurred

right on the pattern’s leftmost character, the number of

comparisons increases by the pattern’s length for each

iteration.

Of course, one could argue that on common cases of

string matching this worst case does not come up regularly.

That is also true for most string matching usage, such as a

find function in text processor, or a search engine, where

the worst case of BMHS is not prone to happen.

How about some more specialized fields such as DNA

sequence matching? In such field, a searched pattern might

be similar to the string that is being searched.

The following test was done with an Intel i7 processor,

8 GB RAM, Windows 10 Operating System, and all

algorithms coded in C++. The test data is a 64 KB text

designed for the worst case of BM algorithm and its

variations. The searched pattern is 7 character long, with

guaranteed mismatch on leftmost character.

GRAPH 1 Number of character comparison and execution time of BM-

BMH-BMHS algorithms’ worst case

0% 200% 400% 600% 800%

BMHS

BMH

BM

Comparison of BM-BMH-BMHS
Worst Case

Number of character compared Execution time

 J U L I E T T H O T E L T A N G O F O X T R O T

1 F O X T R O T

2 F O X T R O T

3 F O X T R O T

4 F O X T R O T

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

GRAPH 2 Number of character comparison and execution time of BM-
BMH-BMHS algorithms’ average case

The data on Graph 1 is presented by referencing the BM

algorithm as 100% in both number of character compared

and execution time. The number of character compared in

BMH and BMHS is around 7 times of BM. This is as

expected since the pattern is 7 character long. The

execution time is faster in BMH probably because the

BMHS needs to access and lookup the next-to-last

character in the text instead of the mismatched character in

BMH.

Nevertheless, it would be unfair for BMH and BMHS if

the algorithms are benchmarked based on their worst case

scenario. The second test data uses a 710 KB text filled

with regular English words. The searched pattern is 7

characters long.

From Graph 2, it could be concluded that BMH and

BMHS is actually faster in execution time against BM. The

BMH algorithm actually compares more character than

BM, but has a faster execution time. This is also

understandable because BM calculate two jump values and

determine the maximum value between the two generated

values. The time taken to do this is minuscule, but when

repeated over and over again several thousands or millions

times throughout the process, this time adds up and slows

down the process.

Out of the three algorithms, BMHS achieved the least

number of character compared and also the least execution

time. The small number of compared character is caused

by the larger maximum jump value that the BMHS has over

BM and BMH. The execution time is also affected by the

less number of comparison made. As BMHS uses only the

least occurrence table like BMH, the execution time is also

faster than BM.

IV. OPTIMIZING BMHS ALGORITHM

BMHS algorithm is often faster than BM and BMH in

average case. This is not the case when facing the worst

case scenario though. There are several ideas to further

optimize the BMHS algorithm.

A. The Pincer Method

The pincer method is based on the pincer movement that

is used in military to describe a maneuver in which the

enemy is attacked from both flanks (sides). In the world’s

history, some decisive victories were achieved by using

this method, i.e. battle of Manzikert and battle of

Stalingrad.

The BMHS algorithm could avoid its common worst

case scenario by using the core principle of this pincer

movement. The idea is to alternately check from both the

left side and the right side.

BMHS does not require a fixed searching pattern from

right to left like the original BM algorithm. No matter

where the mismatch is found, BMHS always use the next-

to-last character to calculate the jump value.

The modified BMHS algorithm, dubbed BMHSP

(Boyer-Moore-Horspool-Pincer), would check the

leftmost character in the pattern, followed by the rightmost

character, then the second character, and so on

TABLE 8 An example of BMHSP algorithm matching process, 3 shifts, 11 comparisons

GRAPH 3 Number of character comparison and execution time of BM-

BMH-BMHS-BMHSP algorithms’ worst case

GRAPH 4 Number of character comparison and execution time of BM-
BMH-BMHS-BMHSP algorithms’ average case

0% 50% 100% 150%

BMHS

BMH

BM

Comparison of BM-BMH-BMHS
Average Case

Number of character compared Execution time

0% 200% 400% 600% 800%

BMHSP

BMHS

BMH

BM

Comparison of BM-BMH-
BMHS-BMHSP Worst Case

Number of character compared Execution time

0% 50% 100% 150%

BMHSP

BMHS

BMH

BM

Comparison of BM-BMH-
BMHS-BMHSP Average Case

Number of character compared Execution time

 J U L I E T T H O T E L T A N G O F O X T R O T

1 F O X T R O T

2 F O X T R O T

3 F O X T R O T

4 F O X T R O T

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

The data in Graph 3 is interesting to say the least. The

BMHSP actually compares the same number of character

as the BM. This is because the mismatch always occur at

the leftmost character. The BM algorithm always checks it

last, but the good suffix rule would jump ahead as long as

the pattern’s length. Meanwhile, BMHSP algorithm

always found the mismatch on first character check, but the

algorithm is unable to advance further than 1 step.

One possible reason of the high execution time despite a

low number of compared character is the calculation of two

pointers used to determine which character to check on the

left and the right side. The pointers are recalculated after

every shift, this causes performance reduction as the shift

is practically done as many times as the text’s length.

The result looks more promising in Graph 4, where the

BMHSP algorithm runs faster than BMHS. Lower number

of compared character is achieved thanks to the pincer

method. On average, a mismatch is detected earlier by

checking the front and end part of the pattern alternatingly.

Like all algorithm, the pincer method also has its own

worst case, and it is no better than the BMHS. The worst

case is when the different character happens to be in the

middle of the pattern.

B. The Tri-Point Check

The worst case scenario for the pincer method sparked

an idea that could help in optimizing the average case of

the BMHS. Instead of checking only the leftmost and the

rightmost character of the pattern on the beginning, why

not check the middle character of the pattern too.

The BMHS algorithm is modified, and referred to as

BMHST (Boyer-Moore-Horspool-Tri), to check the

middle character first after every shift, before proceeding

to check with the pincer method. This further optimizes the

average case because the number of substring that has the

same first character, middle character, and last character

but still differs in other indexes is much smaller than those

that has the same first and last character.

TABLE 9 An example of BMHST algorithm matching process, 3 shifts, 10 comparisons

GRAPH 5 Number of character comparison and execution time of BM-

BMH-BMHS-BMHST algorithms’ worst case

GRAPH 6 Number of character comparison and execution time of BM-

BMH-BMHS-BMHST algorithms’ average case

According to Graph 5, there is no improvement in the

worst case over BMHS. The number of compared character

increases because BMHST actually matches the middle

character before the leftmost character. Surprisingly, the

execution time is not far off the BMHSP, which might

support the previous statement that the execution time is

affected by the calculation of two pointers that is used to

determine the next character index to be checked.

On average case, Graph 6 shows that BMHST is actually

slightly faster than BMHSP. A slightly worse performance

on worst case scenario but slightly better performance on

average case scenario makes BMHST the preferred

algorithm over BMHSP.

C. The Random Pivot

Inspired by the concept of quick sort algorithm, where

the pivot is selected at random to minimize the occurrence

of its worst case scenario, the BMHS algorithm could also

benefit from its own worst case scenario by selecting which

character to check first at random.

The implementation is fairly simple, after every shift,

generate a random number between 0 and the pattern’s

length and start comparing the characters around it. For

example, if the selected random number is n, the next

character to be checked is n+1 and n-1.

BMHS algorithm with the random pivot method

achieved, on average, 400% the execution time of BM

algorithm. The original BMHS algorithm runs at 90% the

execution time of BM, so the random pivot method causes

the process to run up to 4.5 times slower.

0% 200% 400% 600% 800%

BMHST

BMHS

BMH

BM

Comparison of BM-BMH-
BMHS-BMHST Worst Case

Number of character compared Execution time

0% 50% 100% 150%

BMHST

BMHS

BMH

BM

Comparison of BM-BMH-
BMHS-BMHST Average Case

Number of character compared Execution time

 J U L I E T T H O T E L T A N G O F O X T R O T

1 F O X T R O T

2 F O X T R O T

3 F O X T R O T

4 F O X T R O T

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

The random number used in the algorithm is generated

by using the rand() function. The function is called after

every shift. It turns out that the process of generating a

random number, then calculating its modulo, to make sure

it is in range, takes a lot of time. The idea might work if the

random number generator is as fast as or nearly as fast as

assigning a number to a variable. Sadly, this seems

improbable in C++ language.

D. The Good Suffix

Disappointed by the worst case results of the previous

ideas, the search for an algorithm to match the original BM

has gone full circle. If you cannot beat them, join them.

The combination of BM algorithm’s good suffix rule

would drastically reduce both the number of comparison

and execution time in BMHS worst case scenario. The

modified algorithm, codenamed BMHS0 (Boyer-Moore-

Horspool-0) for going back to its root, is expected to run as

fast as BMHS in average case thanks to its capability to

jump one character more than BM. However, the good

suffix rule requires the searching process to be done

sequentially from the rightmost to the leftmost character.

GRAPH 7 Number of character comparison and execution time of BM-

BMH-BMHS-BMHS0 algorithms’ worst case

GRAPH 8 Number of character comparison and execution time of BM-

BMH-BMHS-BMHS0 algorithms’ average case

The example of BMHS0 algorithm would be equal to

Table 5 in average case and Table 6 in worst case.

In Graph 7, it could be seen that the amount of compared

character in BMHS0 is equal to the BM algorithm.

Strangely, the execution time constantly averages slightly

higher than BM. A possible cause is that the BMHS 0

algorithm needs to calculate the index of the character that

is positioned one index to the right of the rightmost

character. As stated before, the time taken to do this is

minuscule, but would add up if done repeatedly.

On average case, the algorithm compares less characters

than BMHS, and nearly 20% less than the BM algorithm

according to Graph 8. The running time does not get much

improvement over BMHS algorithm despite having less

characters to be checked. This may be caused by the index

calculation in the previous paragraph, and also the time

taken to compare the jump values generated by the last

occurrence table and the good suffix rule.

V. CONCLUSION

The BMHST is a pretty good optimization that also has

its own worst case that performs worse than BM, but it

occurs far less often than the regular worst case of BMHS.

The random character selection method is actually better in

evading the worst case scenario. However, the time it takes

to randomize a number in C++ makes the algorithm far

slower than other alternatives.

The best optimization is achieved in BMHS0 algorithm

that combines BM’s good suffix rule and BMHS ability to

jump further. This combination drastically decreases the

worst case scenario impact on BMHS, while also

improving the result on average case for BM. Going back

to use the good suffix rule does increase the complexity of

the code, but it pays off in the execution time.

VII. ACKNOWLEDGMENT

The author would like to thank Dr. Nur Ulfa Maulidevi,

S.T., M.Sc. and Dr. Ir. Rinaldi Munir, M.T. for the

comprehension of algorithm strategies through all the

lectures and projects in this semester. The author would

also like to say thank you to all the family members and

friends for their support throughout the making of this

paper.

REFERENCES

[1] R. Boyer and J. Moore, “A Fast String Searching Algorithm”,

Communications of the ACM, vol. 20, no. 10. 1977.

[2] R. Horspool, “Practical Fast Searching in Strings”, Software:

Practice and Experience, vol. 10, no. 6. 1980.
[3] D. Sunday, “A Very Fast Substring Search Algorithm”,

Communications of the ACM, vol. 33, no. 8. 1990.

DECLARATION

I hereby declare that this paper is of original work, neither

an adaptation, nor a translation of any existing paper, and

not an act of plagiarism.

Bandung, 17 Mei 2017

Rionaldi Chandraseta - 13515077

0% 200% 400% 600% 800%

BMHS0

BMHS

BMH

BM

Comparison of BM-BMH-
BMHS-BMHS0 Worst Case

Number of character compared Execution time

0% 50% 100% 150%

BMHS0

BMHS

BMH

BM

Comparison of BM-BMH-
BMHS-BMHS0 Average Case

Number of character compared Execution time

