
Pathfinding Solution in 2D and 3D Tile-based Space
with Dynamic Programming

Kevin Erdiza Yogatama, 13515016
Informatics Engineering

School of Electrical Engineering and Informatics, ITB
Bandung, Indonesia

13515016@std.stei.itb.ac.id

Abstract—Pathfinding problems are a common problem in
computer science. One ways to solve pathfinding problem are
using the dynamic programming approach. In this paper, we are
interested in extending the basic dynamic programming
approach that is used for pathfinding on a given weighted graph
to be applicable on 2-dimensional and 3-dimensional tile-based
space.

Keywords—height; cost; dynamic programming; 2-dimensional
tile-based; 3-dimensional tile-based;

I. INTRODUCTION

Humans are mobile beings. We always want to move from
one point to another. Whether when we want to get some foods
from the fridge or when we have to go to work as a responsible
worker, moving from one place to another place is a must.
However, before we move away from our original location to
another location, we have to know which path to take. And
most of the time, the further our original location is to the
destination, the harder it is for us to choose which path to take.
In that case, several things have to be considered, such as the
distance traveled, the accessibility of the path, and many other
issues. That very problem is what we call pathfinding.

Pathfinding problem is a problem asking which path one
must take on a given space from one point to another desired
point that follows a given criteria. The criteria is not limited to
finding the shortest path from two point on the space, it can
also include finding the longest path possible, or finding a path
that spans a specific distance. Measuring a path is also not
limited to calculating distance, we can also determine another
variable such as travel cost or difficulty so traveling from one
point to another does not only depend on the distance alone,
knowing that shorter path does not mean easier path.

Fig. 1. There can be more than one path from one point to another. Choosing
between the possible paths is the core of pathfinding problem

In computer science, there are several ways to solve this
problem, and one of them is the dynamic programming
approach. In this paper, we only focus on solving pathfinding
problem that asks which possible path is the shortest in the
term of distance and cost to traverse height using dynamic
programming approach. We are also interested in extending the
basic dynamic programming approach that is used to solved
pathfinding problem on a given cost graph to become
applicable in solving pathfinding problem on a tile-based
space.

II. DYNAMIC PROGRAMMING

A. What is Dynamic Programming Approach?
Dynamic programming approach is an approach that treats

a problem as a structure that is made up of smaller
subproblems and storing their values in case of the same
subproblem occurs. The storing part is what is called
“memoization”. In dynamic programming, the subproblems
that made the whole problem is also considered as stages or
steps in such a way that the main problem can be seen as a
sequence of interrelated decision [1].

In the term of seeing the problem as a sequence of decision,
dynamic programming approach is similar to greedy approach.
One major difference is that in greedy approach, every decision
made is not necessarily related to each and each decision is
only a local optimum meanwhile in dynamic programming

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

approach, every decision is made with consideration of
previously made related decision that is assumed to be optimal
for the previous subproblem.

B. Problems with optimal sub-structure
Problem that is solved by dynamic programming approach

is the problem that has an optimal sub-structure. A problem has
an optimal sub-structure if the optimum solution to the problem
contains the optimum solution to its smaller subproblem [2].

For example, the pathfinding problem searching for the
shortest path has an optimal sub-structure. Suppose we have s
→ u → v as the optimum solution of shortest path problem
from s to v, if shortest path problem truly has an optimal sub-
structure, then it means s → u is the optimum solution shortest
path problem from s to u, being a part of the optimum solution
of the main problem. This holds true because it can be proven
by a contradiction. If s → u is not the optimum solution
shortest path problem from s to u, then there will be a shorter
path in s → u → v as the actual optimum solution. However,
since it is assumed that s → u → v is the shortest path, then we
have a contradiction [2].

C. Memoization
Many problem that is solved by dynamic programming

exhibits a property called overlapping subproblems. The
problem exhibits the overlapping subproblems is the problem
that there are two or more of its subproblem have a smaller
same subproblem.

For example, the problem of finding any Fibonacci number
has the property of overlapping subproblems. the formula to
find any nth Fibonacci number f is as follows:

fF(n) F(n - 1)F(n - 2),if n>2

f1, if n2

f1,if n1

From the formula, we can describe that the problem of
finding the nth Fibonacci number is consist of two smaller
subproblems that are finding the (n-1)th Fibonacci number and
finding (n-2)th Fibonacci number. The subproblems of (n-1)th
Fibonacci number can then be broken down to smaller
subproblems which are the (n-2)th Fibonacci number and the
(n-3)th Fibonacci number. From there, we can describe that the
subproblem of he nth Fibonacci number and the he (n-1)th
Fibonacci number are overlapping because both involves the
same subproblem of he (n-2)th Fibonacci number.

To avoid recalculating the solution of the same subproblem,
in dynamic programming approach, “memoization” technique
is used, which is to store the solution of the subproblems that
can be accessed later if the same subproblem occurs again so
there will be no same calculations done more than once.

III. PATHFINDING ON A TILE-BASED SPACE

A. The problem
In this paper, we focus to pathfinding problem searching

the shortest path on a given tile-based space. The shortest path
is defined as the path with the lowest cost to traverse.

We define a 2-dimensional tile-based space as a collection
of points that have integer Cartesian coordinates of the axis x
and axis y and each point represents a tile. Any object on that
space can only move to 4 directions at a time: north, south,
east, west. Each movement will cost an integer value of 1.

Fig. 2. 2-dimensional tile-based space model are commonly used in
computer games

In the given space, there might be tiles that can’t be passed
so the adjacent tiles will have one less option for movement
and there will be no path that will consist of impassable tiles.

Extending the 2-dimensional tile-based space, we define 3-
dimensional tile-based space as a collection of points that not
only have integer Cartesian coordinates but also have an
integer value representing the tile height. The cost for moving
between tiles with different heights is defined as follows: it will
be either 0 or the height difference minus 1, whichever the
smaller. We treat movement cost of going to a tile with higher
height the same as going to a tile with lower height.

B. The solution
To demonstrate the solution with dynamic programming

approach. We made a program to calculate and visualize the
solution. The program is made in Java and can be found here
https://github.com/keychera/Pathfinding-with-Dynamic-
Programming.

Here are some of the examples of the input and its
visualized solution:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

https://github.com/keychera/Pathfinding-with-Dynamic-Programming
https://github.com/keychera/Pathfinding-with-Dynamic-Programming

Fig. 3. Example of input for 2-dimensional tile-based space. A number ‘0’
represents a tile, the character ‘*’ represent impassable tiles.

Fig. 4. Visualized solution for pathfinding problem on a 2-dimensional tile-
based space. The dark tiles are the impassable tiles.

Fig. 5. Example of input for 3-dimensional tile-based space. A number
represents a tile and its height, the character ‘*’ represent impassable
tiles.

Fig. 6. Visualized solution for pathfinding problem on a 3-dimensional tile-
based space. The darker the gray is, the higher its height. The very dark
ones are the impassable tiles.

IV. SOLVING THE PROBLEM WITH DYNAMIC PROGRAMMING

APPROACH

A. 2D Tile-based space

1) Constructing the solution
Suppose for the shortest pathfinding problem, we are given

an m x n tile-based space and point (i, j) as the starting point
and point (k, l) as the destination point where 0 ≤ i, k < m and
0 ≤ j, l < n. the cost for each movement is the integer value of
1. the solution is defined as a sequence of point in the space
taken that make up the path. The data structure for the points is
done with the following pseudo java code:

class Point {

 int row;

 int column;

}

Code 1. data structure of Point

and the information of world is defined simply with arrays
as follows:

class World {

 char[][] tiles;

 char getInfo(Point p) { ... }

}

Code 2. data structure of World

We can define the problem to have the following structure:
the shortest path from point (i, j) to point (k, l) is made up of
two type of smaller subproblems, the first type is the shortest
pathfinding problem from point (i, j) to either one of the 4
points adjacent to point (k, l) and the second type involves
finding which direction taken and its cost from each of the
adjacent points to the point (k, l). the first subproblem is the
same shortest pathfinding problem and can also be broken
down to two smaller subproblems as above. The second
subproblem’s solution is which point to take to reach the point
(k, l) and along with its cost, they will be stored in a memo.

The dynamic programming approach treats the first
subproblems as the stage of the decision-making and treats the
second subproblem’s solution as the possible current optimal
solution to take if the path ever goes there. Breaking down the
first subproblem will create a new stage and a new solution and
because the problem exhibits the overlapping subproblem
property, it is possible to encounter a first subproblem that
breaks down to an existing second subproblem that is already
saved in the memo, and have a new solution.

For the memo, we define the data stored with the pseudo
java code as follows:

class Memo {

 List<Point> directions;

 int cost;

}

Code 3. data structure of Memo

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Every point on the space will have its own memo
containing the decisions to take and its cost and each point will
have initially infinite cost stored in the memo representing that
there are no calculation done for that specific point. A point can
have two different decision that have the same cost hence it is
saved as a list of value instead. Every time the second
subproblem is calculated, the new result is compared to current
memo and the memo is updated accordingly if the new one has
better cost, removing the previous one.

The problem is solved iteratively using queue with the
pseudo java code as follows:

void findPath(Point target, Point start) {

queue.add(target);

memos[target].addNewMemo();

boolean isStartFound = (target == start);

while(!queue.isEmpty() && !isStartFound) {

 Point checking = queue.remove();

 isStartFound = (checking == start);

 if (!isStartFound) {

 evaluate(checking);

 }

}

}

Code 4. main iteration code for finding shortest path

The evaluate method part will evaluate a given point as the
target point for a shortest pathfinding problem and break it into
maximum of 4 new points to check which are the adjacent
points of the given point and 4 corresponding second type
subproblem’s solution. The next removed head queue will be
evaluated as the next subproblem of the first type: shortest
pathfinding problem.

The second subproblem is handled with the pseudo java
code as follows:

void addNewNote(Point adj, Point checking) {

int newCost = memos[checking].cost + 1;

if (newCost <= memos[adj].cost) {

 if (newCost < memos[adj].cost) {

directions.clear();

memos[adj].cost = newCost;

 }

 directions.add(checking);

 return true;

} else {

 return false;

}

}

Code 5. the method of calculating new cost and adding it to the corresponding
memo

This code calculate the new cost for the adjacent point by
adding the checking point cost by 1 since every step taken cost
1 integer value. Then it is checked whether the newly
calculated cost is better than the one stored in the memo. If it’s
better, the memo is updated accordingly, but if it’s not, the past
calculation is considered. Since the initial cost int the memo for
each point is effectively infinite, the memo will always be
updated for its first calculation.

Notably, The code 5 also returns a boolean value based on
whether the new cost is higher than the stored one or not. The
value will be used in evaluation whether the new tile that have
the new cost will be added to the main queue or not, since
having the new cost higher than the stored one means the past
calculation on that point is more optimum than the new one,
hence not using the new one.

In the code 4, it is defined that the loop will run the
calculation until the queue is empty or until the start point is
found. In 2-dimensional tile-based space, it is given that every
movement cost between any adjacent point is the same which
is an integer value of 1. hence the cost is the same as the
number of step and it also means the first path that found the
start point is the shortest path since the calculation is done step
by step.

After the calculation is done, the solution is constructed by
reading the directions stored in the memo from the starting
point until reaching the target. The code that will construct the
solution is as follows (the solution is stored as the modified
world model, marking the path with the character ‘^’):

World constructSolution() {

World solution = new World(world);

Point traverse = start;

solution.setTile(traverse, '^');

while (traverse != target)) {

 traverse = memos[traverse].directions.get(0);

 solution.setTile(traverse, '^');

}

return solution;

}

Code 6. main iteration code for finding shortest path

The following pictures will show several examples of input
and its solution.

Fig. 7. Input A Example

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

Fig. 8. The solution for input A with the starting point denoted with green
square and destination point denoted with red square

Fig. 9. Input B Example

Fig. 10. The solution for input B with the starting point denoted with green
square and destination point denoted with red square

Fig. 11. The solution for input B with different starting and destination point

B. 3D Tile-based space
To find the solution for shortest pathfinding problem on a

3-dimensional tile-based space. The previous solution for
solving the problem on 2-dimensional space just need some
slight modification as the 3D model is a slightly modified from
the 2D model. The modification needed in 3D model is the
calculation of the cost each movement since movement
between adjacent tiles is no longer the same. In the 3D model,
the cost between two adjacent cell is calculated from the height
difference. If two adjacent points are of the same height, the
cost is 1 but they have different heights, the cost between tile p
and tile q, as defined in the previous section, is calculated with
the following formula:

cost(p,q)1min(0,|p.heght – q.height| - 1)

Using that formula, it means that moving between tiles that
have height difference of 1 cost the same as moving between
tiles of the same height. It also means that moving to higher tile
will cost the same as moving to lower tile for the same height
difference. This formula is used so the program will avoid path
with steep changes of height in its course and prefer a gradual
increase in heights, reflecting on the real life examples that it is
safer for the path to be not steep.

Hence the implementation on the pseudo java code is as
follows:

void addNewNote(Point adj, Point checking) {

int heightCost = 1 + Math.min(0, Math.abs(p.heght –
q.height) – 1);

int newCost = memos[checking].cost + 1 + heightCost;

if (newCost <= memos[adj].cost) {

 if (newCost < memos[adj].cost) {

directions.clear();

memos[adj].cost = newCost;

 }

 directions.add(checking);

 return true;

} else {

 return false;

}

}

Code 7. modified method of calculating cost for shortest pathfinding problem
on a 3-dimensional tile-based space.

Furthermore, the code 4 also needs a slight modification for
the solution to work on 3-dimensional tile-based space shortest
pathfinding problem. For 2-dimensional space, it is assumed
that the shortest path is the same as the path with the least
amount of steps since the cost for each movement is the same
for all cases. But this does not held true for 3-dimensional
space since the cost can vary depends on the tile’s height
difference hence the code modification is as follows:

void findPath(Point target, Point start) {

queue.add(target);

memos[target].addNewMemo();

while(!queue.isEmpty()) {

 Point checking = queue.remove();

 evaluate(checking);

}

}

Code 8. modified method of main iteration code for finding shortest path
om 3-dimensional space .

The above code means that the loop will now exhaustively
search every possible move which is until there is no addition

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

to the queue(every memo on each point has already the most
optimum possible solution).

After the calculation is done, the construction solution part
is the same as the 2-dimensional one.

The following pictures will show several examples of input
used in the 2D section with height modification and its solution
for comparison.

Fig. 12. Input A Example with height modification represented by the integer
from 0-9

Fig. 13. The solution for input A with the starting point denoted with green
square and destination point denoted with red square

Fig. 14. Input B Example with height modification represented by the integer
from 0-9

Fig. 15. The solution for input B with the starting point denoted with green
square and destination point denoted with red square. We can observe
that the path take different route considering the height information
compare to the 2-dimensional conterpart

Fig. 16. The solution for input B with different starting and destination point

V. CONCLUSIONS

In this paper, we have shown you the extension of the
dynamic programming approach used in pathfinding on a given
weighted graph into pathfinding on a 2-dimensional and 3-
dimensional tile-based space. We have shown that the three
problems above share the similar solution and they differs on
how the costs are calculated.

ACKNOWLEDGMENT

Firstly, the author thanks to God who have given me
strength and perseverance for finishing this task. The author
thanks to Mr. Rinaldi Munir, Mrs. Nur Ulfa Maulidevi, and
Mrs. Masayu Leylia Khodra for their teaching and support
along the course of my study of course of IF 2211 Strategi
Algoritmik. The author also thanks to all his friends and fellow
students of Informatics Engineering for their assistance and
support all this time.

[1] Munir, Rinaldi (2005), Diktat Kuliah IF 2211 Strategi Algoritmik

[2] https://courses.csail.mit.edu/6.006/fall11/rec/rec19.pdf Accessed on 16
May 2017

STATEMENT

I hereby declare that the paper I wrote is my own work. It is
not a copy nor a translation of someone else’s paper, and not a
plagiarism.

Bandung, 29 April 2017
signature

Kevin Erdiza Yogatama , 13515016

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2016/2017

https://courses.csail.mit.edu/6.006/fall11/rec/rec19.pdf

	I. Introduction
	II. Dynamic Programming
	A. What is Dynamic Programming Approach?
	B. Problems with optimal sub-structure
	C. Memoization

	III. Pathfinding on a Tile-Based Space
	A. The problem
	B. The solution

	IV. Solving the Problem with Dynamic Programming Approach
	A. 2D Tile-based space
	1) Constructing the solution

	B. 3D Tile-based space

	V. Conclusions
	Acknowledgment
	Statement

