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Abstract—Biology subject, particularly in genetics, are 

continuously growing and developing fast. The biologists taking 

part in this subject are constantly discovering new species. Each 

of species has its unique genetic code that differs them from the 

other species. But, knowing the information about the genetic 

code of a certain species is not sufficient to classify each new 

species. Finding the relation of each new species with the other 

species based on their genetic code is absolutely a tedious job. 

Therefore, they absolutely need a program to find the relation of 

each species, particularly a program to find the longest common 

subsequence of two genetic codes. In this paper, it will discuss 

about basic theorem of dynamic programming, longest common 

subsequence algorithm, and experiment to find the longest 

common subsequence of a certain genetic codes and the other 

organism’s genetic codes, along with its analysis. 
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I.  INTRODUCTION 

The importance of biological discoveries about how closely 
related two organisms using DNA as its indicator is one of the 
very important subjects in Biology. Through the discoveries, 
the biologists can find many fresh knowledge that is beneficial 
in human life, for instance, the fact that the discoveries the 
similarity of DNA from human and one of primates, 
chimpanzee, that is reaching 70 % can be concluded that 
human and chimpanzees are closely related and thus believed 
that the 2 species came from a certain species that is common 
ancestor of humans and chimpanzees. This fact surely 
encourages biologists to find the common ancestor of the two 
species and can lead to find a massive discovery about the 
common ancestor. 

Furthermore, after determining the most closely related 
organism, it can continue to classification of each new 
organism in order to include new organism to a certain group 
which has similarities with the new organism. There are still 
millions of species to discover in earth and the longest common 
subsequence algorithm is a helpful tool to find the similarities 
between 2 genetic codes of 2 organisms. With the algorithm, it 
will able to show how similar are the 2 genetic codes. 
Moreover, the new species can be classified to a group which 
has the most similarities with it. 

II. BASIC THEOREM OF DYNAMIC PROGRAMMING 

Dynamic Programming is a general algorithm design 
technique for optimizing a solution of a multistage problem. 
Dynamic Programming technique can be used for solving 
problem that has overlapping sub-problems [1]. Overlapping 
sub-problems is a smaller part of a whole problem and the 
solution of the sub-problems can be used more than once to 
construct a solution for a bigger sub-problem. Hence, it is 
better to solve the overlapping sub-problems once and the 
solution can be used to construct a solution for a bigger sub-
problem rather than repeatedly searching the solution for the 
sub-problems over and over again. That is obviously the main 
idea of dynamic programming technique, to prevent computing 
the same thing twice or more. Computation for the solutions of 
sub-problems and certainly, the main solution, is using tables. 
Using tables to record the solution is also called memoization.  

According to Richard Bellman, the inventor of Dynamic 
Programming, there is principle of dynamic programming in 
order to obtain an optimal solution. It is called principle of 
optimality. It has meaning that a solution of a certain problem 
is optimal, then the solutions of all sub-problems is optimal. 
When we are reconstructing a solution of a certain state, it will 
use the previous optimal solution of a sub-problems without 
searching the solution of the sub-problem from the start state 
again [2]. 

There are several characteristics of a problem to be 
considered as solvable using dynamic programming technique 
[2]: 

1. The problem can be divided into sub-problems and for 
each of them can be found only one solution. 

2. A state is constructed from some states (or only one 
states) which is related to the state. 

3. Solution of a certain state can be used for the next state. 

4. Cost of state is increasing steadily as the step of finding 
solutions is increasing.  

5. Cost of a certain state depends on cost of past steps and 
cost in the current step. 

6. The solution of a certain step is independent from the 
solution of past steps. 
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7. There exists a recurrence relation of a certain step of 
which the state’s solution is optimal and can construct 
next state’s optimal solution. 

8. Principle of optimality holds. 

There are two approach of finding optimal solution using 
dynamic programming technique, that is top-down approach 
and bottom up approach. Top-down approach usually using the 
recurrence relation, basis of relation, and memoization 
technique. Memoization is a step to write an optimal solution 
of a certain state so that when a certain state’s solution is 
required to form the next solution of a state, the written 
solution can be directly used without computing the same 
solution again. This approach only computes some needed sub-
problems and this could be faster as we don’t need to write all 
solutions of sub-problems. Nevertheless, the top-down 
approach can be slower if many sub-problems are visited due 
to function call overhead [3]. 

On the other hand, bottom up approach is a technique to fill 
up the solution of all the sub-problems in a certain problem and 
each state is only computed once. This technique has a 
drawback; it is often that the solution of a sub-problem is not 
used to form a solution of a certain problem, thus it requires 
more memory to save the solutions. But sometimes, the bottom 
up approach is faster than the top-down approach as the top-
down creates function call overhead from recursive calls and 
when many sub-problems are revisited to construct a greater 
sub-problem’s solution [3]. Hence, it is important to use a 
correct technique to solve dynamic programming problems. 

These are general steps to use dynamic programming 
algorithm [2]: 

1. Create optimal solution structure. 

2. Define recurrence relation to find optimal solution. 

3. Use one of two dynamic programming technique: top-
down or bottom up approach. 

4. Construct optimal solution. 

III. LONGEST COMMON SUBSEQUENCE ALGORITHM 

Longest Common Subsequence problem is a problem to 
find the maximum length of common subsequence (can be a 
list of characters) of 2 strings. For this time, we limit the 
discussion of longest common subsequence for only 2 strings 
with no spaces within the strings (since there can be finding 
longest common subsequence for 2 sentences and finding the 
length of longest common subsequence, that is words). For 
example, if I have strings: 

A: DICKYNOVANTOINFORMATIKA 

B: STRATEGIALGORITMA 

Therefore, the longest common subsequence of both string 
is: ATIORMA. Because the longest common subsequence of 
the 2 strings appears in the made bold characters below: 

A: DICKYNOVANTOINFORMATIKA 

B: STRATEGIALGORITMA. 

In this case there are no subsequence of the 2 strings that is 
longer than “ATIORMA”.  

In bottom up, firstly, we need to define a matrix of integer 
with size ((length of string 1) + 1) times ((length of string 2) + 
1) to save the solution of each state. We need the addition 1 of 
each string length because we need to define the base cases of 
longest common subsequence solution and to define it, we need 
the added length. The base cases of this solution is when there 
is one empty string of the 2 strings, the longest common 
subsequence length of both string is obviously 0, because there 
is no same subsequence of two strings. The general formula of 
the length longest common subsequence considered two cases: 

1. If the two characters of certain indices of two strings that 
is being checked is same, then the new length of 
longest common subsequence is the previous length of 
longest common subsequence (excluding the last 
characters checked on both strings) added by 1. 

2. If the two characters of certain indices of two strings 
checked is different, then the current length of longest 
common subsequence is the maximum of longest 
common subsequence length if the last character of 
string 1 checked is removed and longest common 
subsequence length if the last character of string 2 
checked is removed. It means that it is finding the 
maximum of solution from previous length produced.  

Here is the pseudocode of finding the length of longest 
common subsequence using bottom up technique (n is length 
of string 1 and m is the length of string 2, and a[i][j] is the 
solution when the state is i and j): 

for i=0 to n { 

 a[i][0] = 0;//base case 

} 

for j=0 to m { 

 a[0][j] = 0;//base case 

} 

for i=1 to n {  

 for j=1 to m { 

  if(word1[i-1] = word2[j-1]) then  

   a[i][j] = a[i-1][j-1] + 1; //same 

characters 

  } else { 

   a[i][j] = max (a[i-1][j], a[i][j-1]); 

   //different characters 

  } 

 } 

} 

print a[n][m]; //printing the answer 

The top-down formula is almost the same as the bottom up 
formula. The only difference is that top-down approach utilizes 
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recursive function and of course a table to save solution of each 
state. 

Here is the LCS function with top-down approach returning 
the length of longest common subsequence of the two strings:  

function lcs(int n, int m)  integer { 

 if n or m is 0 then return 0; 

 else if (a[n][m] is not empty) then return 

a[n][m];  

 else if(word1[n-1] == word2[m-1]) then 

return a[n][m] = lcs(n-1, m-1) + 1; 

//memoization 

 else { 

  return a[n][m] = max(lcs(n-1, m), 

lcs(n,m-1)); //memoization 

 } 

} 

Notice that there is memoization in table a and this is the 
most important part in speeding up the recursive program. 
Stated in the code that when a[n][m] is not empty, which 
means that the solution in state n and m has already computed 
and written in the table a, the code will just return the solution 
written in a[n][m] without searching the solution in this state 
again.  

Both complexity in top-down and bottom up approach is 
clearly O(n.m). The complexity is obvious in the 
implementation of bottom-up approach since there are 2 nested 
loops, loop (m times for n times). If we implemented a naïve 
recursive algorithm (without memoization), than we can see 
that there are overlapping sub-problems that is computed 
several times and this is time consuming as the time 
complexity in worst case is O(2^n). This could happen if there 
are no matching between 2 strings and thus will execute max 
(lcs(n-1, m), lcs(n, m-1)), which means that it keeps dividing 
into 2 new recursion function until n or m is 0. This is the 
reason why the worst case complexity is O(2^n). 

Here will be explained how the bottom up approach works 
to solve the longest common subsequence problem. We take an 
example of two strings, that is: 

Word1: ACAATCC 

Word2: AGCATGC 

Here is the base case of finding length of longest common 
subsequence from the two strings: 

  Word2   A G C A T G C 

Word1 Index 0 1 2 3 4 5 6 7 

  0 0 0 0 0 0 0 0 0 

A 1 0               

C 2 0               

A 3 0               

A 4 0               

T 5 0               

C 6 0               

C 7 0               
Table 1: The base case tables formed. 

Index 0 indicates the case if a certain string is an empty 
string. It is obvious that the length of longest common 
subsequence of empty string and a (non) empty string is 0 since 
there are no subsequence that is common between two strings.  

  Word2   A G C A T G C 

Word1 Index 0 1 2 3 4 5 6 7 

  0 0 0 0 0 0 0 0 0 

A 1 0 1 1 1 1 1 1 1 

C 2 0               

A 3 0               

A 4 0               

T 5 0               

C 6 0               

C 7 0               
Table 2: Result of longest common subsequence involving 

the first characters of word1. 

We can see that in index (1,1) (order of index: (row, 
column)), the characters of both strings is same, so using the 
solution of index (0,0) and then added by 1 as ‘A’ has to be 
added to be the part of longest common subsequence and the 
longest common subsequence of string “A” and “A” is ‘A’ 
itself. Then the index (1,2) is 1 because of gaining the 
maximum value from a[1][1] and a[0][2] and the length of 
longest common subsequence of string “AG” and “A” is 1, and 
the common subsequence is surely ‘A’. In the final column, 
a[1][7] is still 1 as we can see that the longest common 
subsequence of string “A” and “AGCATGC” is ‘A’ and ‘A’ is 
only 1 character, hence the answer is 1. 

  Word2   A G C A T G C 

Word1 Index 0 1 2 3 4 5 6 7 

  0 0 0 0 0 0 0 0 0 

A 1 0 1 1 1 1 1 1 1 

C 2 0 1 1 2 2 2 2 2 

A 3 0 1 1 2 3 3 3 3 

A 4 0               

T 5 0               

C 6 0               

C 7 0               
Table 3: Computing length of longest common 

subsequence until the 4th row. 

Table 3 shows that there are changes in table content 
compared to table 2. The value a[2][3] has changed to 2 due to 
the same characters checked, that is ‘C’, so the longest 
common subsequence of string “AC” and “AGC” is “AC” that 
has length of 2. This also happens in index (3,4) where the 
longest common subsequence of string “ACA” and “AGCA” is 
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“ACA” with length of 3. This continuously happens until the 
last row and column of table. 

  Word2   A G C A T G C 

Word1 Index 0 1 2 3 4 5 6 7 

  0 0 0 0 0 0 0 0 0 

A 1 0 1 1 1 1 1 1 1 

C 2 0 1 1 2 2 2 2 2 

A 3 0 1 1 2 3 3 3 3 

A 4 0 1 1 2 3 3 3 3 

T 5 0 1 1 2 3 4 4 4 

C 6 0 1 1 2 3 4 4 5 

C 7 0 1 1 2 3 4 4 5 
Table 4: Finished computing length of longest common 

subsequence. 

From table 4, we can conclude that the length of longest 
common subsequence of string “ACAATCC” and 
“AGCATGC” is 5. This value can be picked up from the last 
index of row and column, that is a[7][7]. 

After computing the solution and formed a table containing 
solution of the solution and its sub-problems, the last step 
needed is to find the longest common subsequence itself. There 
is algorithm to find it. Here is the pseudocode to find the 
longest common subsequence of 2 strings. 

idx = a[m][n]; 

i = m; j = n; 

while(i and j are not 0) { 

 if(word1[i-1]==word2[j-1]) then //same 

char 

  idx = idx - 1; i = i – 1; j = j – 1; 

  ans[idx] = word1[i-1]; 

 else { 

  if(a[i-1][j] > a[i][j-1]) then i = i – 

1; 

  else { 

   j = j – 1; 

  } 

 } 

} 

for i = 0 to a[m][n] { 

 print ans[i];  

} 

 

The main idea of finding solution is that we are tracing 
back from the solution starting from the last index of row and 
column all the way down until index (0,0). Tracing back means 
that a certain solution must be clear where it come from, and 

the characters that are found same on a certain index written 
down as the solution.  

 

Figure 1: Tracing back from table to get the longest 
common ancestor 

From figure 1, we can get the information that we tracing 
back from the last index to the first index of tables. In index 
(7,7), the character from both string at the index is same, that is 
‘C’, so ‘C’ is written as a solution, and can subtract all the 
indices. In index (6,6), we can see that character ‘C’ is not the 
same as ‘G’, so we need to find the maximum value of a[i-1][j] 
and a[i][j-1], we can pick one of them (shown in the figure, it 
goes to the left). In index (6,5) the characters do not match, so 
we are going upwards because the maximum value of 3 and 4 
is 4. Then this time, the character match (character T) and we 
save the T character as a solution. Just do this along the path 
and we got the longest common subsequence: “ACATC”. 

Finding the longest common subsequence of two strings 
have the complexity of O(n + m). It is because it traverses 
down from the last index to the index (0,0) in the solution table 
and this requires the n + m times in the worst case make the 
way to the first index. 

IV. APPLICATION AND EXPERIMENTS WITH ANALYSIS  

Longest common subsequence algorithm has many 
applications in life. One of them is to determine the similarities 
between 2 organisms. Suppose that we have a set of organisms 
along with its genetic code sample, and we have a certain 
genetic code of an organism that has not been in the dictionary 
of organisms, and we have curiosity to know what is the closest 
related from the new organism to the organism that has been 
recorded. The closest related organisms are the one that longest 
common subsequence of genetic codes of both organisms, 
which means has the biggest percentage of genetic code 
similarity. The percentage of similarity can be obtained by 
dividing the length of longest common subsequence and the 
length of genetic code times 100 %. 

Here will be shown the example of finding the similarities 
of two organisms, that is chimpanzee and spider and the other 
organism in the dictionary (human, ant, and crocodile). The 
genetic codes in the figures below are just an example, not the 
real genetic codes of each species.  
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Figure 2: Longest common subsequence of chimpanzee’s 
genetic code and the rest of genetic codes. 

From figure 2, we get the information that the most closely 
related to chimpanzee is human with the percentage of 
similarity is 71.429 %. This comes from the length of longest 
common subsequence of genetic code of human: “AGCATGC” 
and genetic code of chimpanzee: “ACAATCC” is “ACATC” 
with the length of 5 and (5/7)* 100% = 71.429 %. This 
percentage is obviously higher than the other percentage of just 
57.143 % similarity between chimpanzee’s genetic code and 
ant and crocodile’s genetic code. 

Here are two genetic codes of human and chimpanzee with 
its longest common subsequence characters made bold: 

Human : AGCATGC 

Chimpanzee : ACAATCC 

This example has already been discussed in the previous 
section (Longest common subsequence algorithm). 

 

Figure 3: Experiment with input the new organism is Spider 
and its genetic code. 

We can conclude from figure 3, that the mostly related 
organism to spider is ant with the percentage of similarity is 
58.333 %. The value is the highest among the 3 percentage. 
This value is obtained by dividing the length of longest 
common subsequence and the length of the spider’s genetic 
code, that is (7 / 12) * 100% = 58.333 %. 

Here are the two words, code genetics of spider and ant, 
with the longest common subsequence characters made bold: 

Spider : CATCAGGGATAT 

Ant : CGATCGAT 

V. CONCLUSION 

In conclusion, dynamic programming technique is a tool to 

solve some problems that has overlapping sub-problems 

within in order to prevent solution re-calculation on a same 

sub-problem. Dynamic programming technique can be divided 

into 2 approaches, that is top-down and bottom up approaches. 

While top-down utilize recurrence relation and memoization 

once the solution is found, bottom up approach usually 

searching the solution of all the sub-problems. 

One of dynamic programming algorithm is longest 

common subsequence. Longest common subsequence 

algorithm is an algorithm to find the maximum length of 

common subsequence of 2 strings. The algorithm is very 

useful in real life, particularly in Biology subject. In Biology, 
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longest common subsequence can be used to determine how 

close an organism to the other organism using their genetic 

codes. The more percentage of similarity of both codes, the 

more similar the new organism checked to organism in the 

data. 

Finding length of longest common subsequence of 2 

strings with naïve recursive function (top-down approach 

without memoization) has the time complexity O(2^n). It is 

much slower compared to both top-down and bottom up 

approach owing to re-computation in naïve solution. 
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