

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Greedy Approach for Solving Interval-Covering Problems

Salvian Reynaldi 13511007

Computer Science / Informatics

School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Ganesha 10 Bandung 40132, Indonesia

salvianreynaldi@students.itb.ac.id

Abstract — an algorithm is a number of structured and well-

ordered steps that can be used to solve problems. In the

Computer Science subject area, the problems often involves

computing. Those algorithms can be classified into some

categories. By its design paradigm, algorithms are classified

into the Brute Force Algorithm, the Divide and Conquer

Algorithm, the Greedy Algorithm, and the Dynamic

Programming Algorithm. On harder problems, it is usually not

enough to use just one of the paradigms to solve the problems.

Usually combining these techniques are required in order to

achieve the desired solution or to get a more efficient solution.

However, Greedy algorithm paradigm has been used to solve

some famous problems in Computer Science. Some of the

examples are the fractional knapsack problems, the load-

balancing problems, Huffman-code compression algorithm, the

Shortest Path problems, and the interval-covering problems.

Index Terms — algorithm, Computer Science, greedy,

interval covering.

I. INTRODUCTION

One of the well-known problems in Computer Science

subject area is the Interval-covering Problem. The core

directive in the Interval-covering Problem is to cover as

many areas as possible with as few covers as possible. A

cover here is defined as anything that can extend over the

area or has a covering radius/distance over some area.

Actually, the application of interval-covering problems can

be easily found in real-life. Many of these applications

involve “installation problem”, such as the tower

installation problem, the lighting installation problem, etc.

An example of the interval-covering problem application

that does not involve installation is the garden watering

problem.

On the other hand, there are many algorithms that are

already invented. By its design paradigm/methodology,

some of the algorithm classifications are Brute Force,

Divide and Conquer, Greedy, and Dynamic Programming

algorithms. Brute Force (a.k.a. Complete Search)

Algorithms is a method for solving a problem by traversing

the entire part search space to obtain the required solution

[1]. In some smarter variants, usually brute force algorithm

involve some pruning (deliberate act of not exploring)

parts of the search space so that the algorithm can be more

efficient / run faster. Pruning is done if it is clear that some

parts have no possibility of becoming the desired solution.

Divide and Conquer is a method in which a problem is

made simpler by ‘dividing’ it into smaller parts and then

conquering each part. Dynamic Programming also make

problems simpler by breaking them into smaller sub

problems (as in Divide and Conquer), but usually the

problems has unique characteristics, i.e. they usually have

both optimal sub structure and overlapping sub problems.

Greedy algorithm paradigm will be described in the next

section.

II. GREEDY PARADIGM

Greedy algorithm is usually used for optimization

problems. There are many optimization problems that can

be solved by the Dynamic Programming technique, but

sometimes using Dynamic Programming to solve those

problems is overkill. Greedy algorithm usually is not only

a simpler but also a more efficient option for solving those

problems. It is usually easier both to think and to

implement Greedy algorithm, plus it typically run fast.

According to [1], an algorithm is said to be greedy if it

makes the locally optimal choice at each step with the hope

of eventually reaching the globally optimal solution. In

another words, Greedy algorithm always makes the choice

that looks best now [2]. Agreeing with [1] and [3],

problems that can be solved by Greedy Algorithm

Paradigm usually have special characteristics, explicitly

they usually have:

 Optimal sub structures.

It means that for every greedy problems, the

optimal solution to the problem embraces

optimal solutions to its sub problems. In other

words, the solution to a problem can be

determined from the optimal solutions to its sub

problems.

 Greedy choice property.

It means that by choosing the best-at-the-

moment choice, the optimal solution can

eventually be reached without having to look

back / reconsider previous choices that have

been made (making greedy choice at every step

will generate the desired optimal solution). This

characteristic distinguishes the Greedy

paradigm from the Dynamic Programming

paradigm. In the Dynamic Programming

technique, we often reconsider the previous

choices that have been made when we are about

to make a present choice. That characteristic is

usually called overlapping sub problems.

However, in Computer Science, greedy heuristic

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

strategy is not (always) a good approach to solve

optimization problems. If a problem does not exhibit one

of the two characteristics mentioned above, the greedy

algorithm may not work. The difficult part in using Greedy

to solve problems is to prove the second characteristic

mentioned before. Greedy algorithms are infamous for

being tricky, that even missing a very small detail can be

fatal1. Nevertheless, Greedy algorithm has been proven

able to solve many optimization problems, such as activity-

selection problems, fractional knapsack problems, load

balancing problems, and interval-covering problems.

III. INTERVAL-COVERING - PROBLEMS

Let us start with a simple example. The problem here is

titled Scarecrow; it is taken from [4], problem number

12405. Here, there is a man that has a very long field for

farming that can be modeled as a 1 𝑥 𝑁 grid. Some parts of

the field are fertile meanwhile the others are infertile.

However, the area is full of crows, and the man fears that

they might feed on most of the crops, so he decide to place

some scarecrows on the field. When placed to a spot, a

scarecrow can cover the cell to its immediate left and right

as well as the cell it is on itself. The goal is to set the

number of scarecrow that needs to be placed so that all the

fertile sections of the field are covered. A real-life

application is the lighting installation on a narrow road. To

be as efficient as possible, of course we want to set up as

few lamps as possible.

Another example of interval-covering problem is titled

Watering Grass; it is taken from [4], problem number

10382. Here, there is an 𝑙 𝑥 𝑤 strip area of grass, and also

some sprinklers. Each sprinklers have their own radius of

operation, their own distance from the left end of the strip,

and are placed in the middle of the strip. The operation

radius of the sprinklers may overlap each other. The first

goal is to decide whether it is possible to water the entire

1 TC

strip with the sprinklers. If it is possible, determine the

minimum number of sprinklers needed to do so (this is both

a decision and an optimization problem at once). This

problem can actually be directly applied in real life. We

want to be as efficient as possible (thus saving not only

electricity power but also water) when we are watering the

garden. In order to achieve that, we need to turn on as few

sprinklers as possible (although in real life sprinklers may

have same operation radius, so the problem may be not

about which sprinklers to turn on, but about how to place

sprinklers smartly).

Sprinklers. Source:
http://www.temeculavalleyirrigationsystems.com/home/

One more example of the Interval-covering Problem is

titled the radar installation problem. Here, we are given

some number of small islands; each has its distinct

location. There are also some radars with same covering

radius. The radars are to be placed somewhere in the coast

(it is assumed here that the coast is a straight line). We have

to determine the minimum number of radars that needs to

be set up so that all the islands are covered by those radars.

Real-life application of this example is actually obvious,

like the previous example, it can be directly applied.

Assume a new mobile network operator (a.k.a. wireless

service provider / wireless carrier) just started their service

in Indonesia. The first goal they will want to achieve is

usually to cover as many areas as possible / every single

island in Indonesia, so that they can provide their wireless

communications service to as many people as possible.

However, with just “a few” budget (given that they have

just been established), they’ll more likely to set up as few

BTS (Base Transceiver Station) towers as possible while

achieving the goal. Scarecrows. Source: Wikipedia.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Radar Coverage Illustration. Source:

http://cdn.blogs.fredericksburg.com/kinggeorge/

files/2011/06/Cell-Tower-Coverage2.jpg

IV. INTERVAL-COVERING - ANALYSIS

A. The Scarecrow Problem

Assume the garden layout is like this:

.#.....##

123456789

Here, a dot denotes the fertile part while a hash denotes

the infertile part of the field. In addition, assume that the

Scarecrow coverage is like this (three-unit long):

XXX

S

A brute force approach for solving this problem is to test

all the 2N combinations of placing scarecrow. Of course, it

is not very efficient. However, since the coverage

scarecrows is three unit long, it is intuitive that the

maximum number of scarecrows needed for the N unit long

field is ⌈𝑁/3⌉; That is, we cover each three unit from the

left end to the right end with a scarecrow. Remember that

the field has some infertile parts in it; thus, to cover the

infertile parts of the field is actually unnecessary.

For the greedy algorithm to work, let us first reveal the

optimal sub structure and greedy choice characteristic out

of this problem. Actually, it is clear that this simple

problem exhibits those characteristics. To emphasize it, let

us start from a smaller example.

For 𝑁 = 1, the optimal number of scarecrows to be

placed in the field is 1. We place it on position 1.

S

1

For 𝑁 = 2 or 𝑁 = 3, the answer is still 1, because we

can place the scarecrow on position 2; it can still cover

position 1 (and position 3 as well).

XSX

123

For 𝑁 = 4, 5, 6, it is just the same as if 𝑁 = 1, 2, 3; we

can independently place another scarecrow on position 4

(or 5), without caring where the previous scarecrow is

placed. Thus, this problem has the greedy choice property.

Assume there is another way to place a scarecrow on a

 three-unit long field (not on position 2), i.e. if the field

has an infertile part:

#XS

123

Then the optimal solution for six unit long field will be

like this:

#XSXSX

123456

Or like this:

#XSXXS

123456

Since the solution for 𝑁 = 6 field contains the solution

of the 𝑁 = 3 field, we can say that this problem exhibit the

optimal sub structure characteristic. It will always contain

optimal sub problems solutions, because if it did not, we

would choose that more-optimal sub solution when we are

making the global solution.

So, the greedy strategy for solving this problem is like

this. From the left end position, see if that unit is fertile or

not. The main step is: if the unit is fertile and not covered

yet, place a scarecrow on the next-to-the-right position; if

it is not, skip the current unit. After that, move to the next

unit. Repeat the main step, until we reach the right end of

the field.

B. The Watering Grass Problem.

Problem illustration. Source: [4].

Assume there’s a garden which length is 20, width is 2,

and has eight sprinklers. The sprinklers are on this position

(sorted by increasing xi):

1) 1, its operation radius is 2,

2) 4, its operation radius is 1,

3) 5, its operation radius is 3,

4) 7, its operation radius is 2,

5) 10, its operation radius is 2,

6) 13, its operation radius is 3,

7) 16, its operation radius is 2, and

8) 19, its operation radius is 4.

Brute Force strategy, that tries all possible subsets of

sprinklers to be turned on, is definetely infeasible to try,

because there will be 2N possible subsets of sprinklers. If

we observe this problem further, actually, it is just like the

previous example (Scarecrow), but this time the coverage

of each scarecrow is different, and the coverage area is a

circle, not a rectangle. Let us try transforming this problem

into a normal interval-covering problem.

http://cdn.blogs.fredericksburg.com/kinggeorge/files/2011/06/Cell-Tower-Coverage2.jpg
http://cdn.blogs.fredericksburg.com/kinggeorge/files/2011/06/Cell-Tower-Coverage2.jpg

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

If we transform the sprinkler

coverage from a circle into a

rectangle (that has the same width

𝑊 as the grass strip), the effective

rectangle coverage area is shown

as in this figure on the left. It is a

rectangle which length is2𝑑𝑋 =

2√𝑅2 − (
𝑤

2
)

2

, while the rest (𝑅 −

𝑑𝑋) area will not be completely covered by the circle.

After that, let us transform the entire sprinkler

operation radius into rectangles, so that the coverage area

of each sprinkler will be[𝑥𝑖 − 𝑑𝑥 . . 𝑥𝑖 + 𝑑𝑥]. Now it

becomes a normal interval-covering problem. Interval

covering problem has been proven to have the optimal sub

structure (the optimal solution for 𝑙 ∗ 𝑤 garden contains the

optimal solution for (𝑙 − 1) ∗ 𝑤, (𝑙 − 2) ∗ 𝑤, … garden)

and the greedy choice property (to choose whether a

sprinkler should be turned on or not is independent one

another) characteristic.

To solve this kind of interval-covering problem, first

we sort the sprinklers by increasing left-end-coverage and

by decreasing right-end-coverage if ties arise. After that,

from the left to the right we continuously choose a sprinkler

that covers “as far right as possible” and can still cover the

current uncovered position. For example, if we use the

problem illustration case above, our greedy strategy will

choose the first sprinkler, skip the second sprinkler while

choosing the third sprinkler (because the second sprinkler

𝑑𝑋 is 0 it is too small to cover the grass strip). Later it

will choose the 4th, 5th, and 6th sprinkler, and skipping the

7th sprinkler while choosing the 8th sprinkler (because the

8th sprinkler is more far right than the 7th semester).

 (1)

C. The Radar Installation Problem

Because the coast line is an infinite straight line, let us

assume that the coast line is the x-axis, and the islands are

located above the coastline. Firstly, soon we will realize

that the radars should be installed exactly on the coastline,

not below the coastline, because it will be not very useful

if we install it below the line; the islands are above the line,

so in order for the radar to reach as far top as possible,

installing the radars “as top as possible”. So that, we will

be more likely to cover more islands.

Secondly, let us try the Brute Force Approach for this

problem. The naïve brute force approach that tries to set up

radars in every possible places will not work, because in

this case the possible places are not only integer-numbered

positions, but also real-numbered positions. Another

smarter brute force approach is to try placing radars on

every possible subsets of islands. There will be 2𝑀 possible

subsets, so does the time complexity of the solution.

Now we know already that the interval-covering

problem is a greedy problem. This radar installation

problem is actually an interval-covering problem, too. It

tries to cover as many islands as possible with as few radars

as possible. So let us try a greedy approach to solve this

interval-covering problem.

Let us try three distinct greedy strategies. The first

greedy strategy is to set up radars from the left to the right

so that a radar is assigned to each island, also from the left

to the right, if the island is still uncovered. In addition, that

radar is actually placed on position 𝑋𝑖 (the same position

as the island’s absis coordinate). See the figure below.

Islands’ location:

Solution if using the mentioned greedy strategy:

However, this greedy strategy is not always optimal. Let

us observe this case:

Islands’ location:

Solution if using the mentioned greedy strategy:

It uses two radars to cover two islands. However, it is

actually possible to set up just 1 radar to cover them all,

like this:

The optimal solution:

So this greedy strategy is proven to be not optimal.

The second greedy strategy is to scan from the left to the

W
R

dX

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

right, assigning a radar to any island, as long as the island

is uncovered, so that the island will be on the edge of the

coverage radius of the radar. Let us see the figure below.

Islands’ location:

Solution if using the second greedy strategy:

Of course it is optimal. It was the example that we used

to prove that the first greedy strategy is not an optimal one.

However, this (the second) greedy strategy is not the best,

either. See the figure below.

Islands’ location:

Solution if using the second greedy strategy:

We force the island to be on the edge of the radar’s

coverage radius and we scan from the left to the right.

Because of that, we will begin with the blue island. We

assign one radar to cover this island, the red radar.

However, the red radar is not able cover the next island, the

green island. So we assign another radar, the black radar,

to cover this island. Actually, the optimal solution is to just

use one radar to cover those islands.

The optimal solution:

So, again we prove that this greedy strategy is not an

optimal one, either. Many other greedy strategies can be

tried to solve this problem, but let us go directly to the

optimal solution by doing some deeper analysis.

In this problem, the radius

coverage of the radars are

the same. Let us say that

the radars’ radius coverage

is R units, and the islands’

location coordinates are

denoted with 𝑋𝑖, 𝑌𝑖. Since

the coast is described as an

infinite straight line (the x-

axis), soon we will notice

that there are three possible cases of 𝑌𝑖.

 𝑌𝑖 is greater than R. There will be no radar that is

able to cover that island, because the radars’

maximum vertical reach is R. See the figure

below.

 𝑌𝑖 is exactly R. There should be a radar that is

placed 𝑎𝑡 𝑋𝑖, so that this particular islands can be

covered. See the figure below.

 𝑌𝑖 is less than R. There are some possible spots

to set a radar up. Specifically, a radar can be

installed on position [𝑋𝑖 − 𝑑𝑥 . . 𝑋𝑖 + 𝑑𝑥] in

order to cover this island. See the figure below.

What is dX? Simillar to the previous example (the

Watering Grass Problem), 𝑑𝑥 = √𝑅2 − 𝑌𝑖2. To solve this

problem, first transform all the islands’ coordinate from

𝑋𝑖, 𝑌𝑖 to 𝐴𝑖, 𝐵𝑖, where 𝐴𝑖 = 𝑋𝑖 + 𝑑𝑥, 𝐵𝑖 = 𝑋𝑖 + 𝑑𝑥. After

that, sort the islands by increasing Bi, or by increasing Ai

if ties arise.

Next thing to do is to set up radars from the left to the

right. From the first island, we put a radar as far right as

possible but it should be still able to be cover the current

position.

Look at the pseudo-code below.

R

i:=1;ans:=0;

while (i<=n) do

 begin

 j:=1;ans:=ans+1;

 while (j<=n) and (x[j]<=y[i]) do

 j:=j+1;

 i:=j;

 end;

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

V. CONCLUSION

For some Computer Science optimization problems,

solving them with the Dynamic Programming technique is

usually too much. In addition to be a bit slower, a Dynamic

Programming solution also tends to be harder / far more

complex to implement than the Greedy one. However,

Greedy Algorithm requires a problem to have two main

characteristics in order to work; the optimal sub structures

and the greedy choice property. That is actually the

difficult part of implementing a greedy solution: to prove

that the problem has those characteristics; without doing

this proving, using greedy paradigm to solve problem is

actually risky.

VI. ACKNOWLEDGMENT

I want to thank

 God, for giving me strength and blessing so I

am able to finish this paper.

 Dr. Ir. Rinaldi Munir, the lecturer of the IF2211

course, for making algorithms more interesting

by his inspiring lectures so that we students

enjoy attending the class every Monday and

Wednesday.

 My IF2211 AY2013/2014 friends, for further

explanations about greedy paradigm so I can

understand this algorithm paradigm better.

REFERENCES

[1] Halim, Steven and. Felix Halim. Competitive Programming 3; The

new Lower Bound of Programming Contests.

[2] Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L.,

Stein, Clifford. Introduction to Algorithms (3rd ed.). MIT Press and

McGraw-Hill, 2008.

[3] TopCoder Community Forum:

http://community.topcoder.com/tc?module=Static&d1=tutorials&d

2=greedyAlg accessed on December 19, 2013, at 7.37 a.m.

[4] University of Valladolid (uVa) Online Judge:

http://uva.onlinejudge.org, accessed on December 17, 2013, at 8.40

a.m.

STATEMENT

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

Salvian Reynaldi

13511007

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=greedyAlg
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=greedyAlg
http://uva.onlinejudge.org/

