
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

Minimax and Expectimax Algorithm to Solve 2048

Ahmad Zaky | 13512076
1

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1
13512076@std.stei.itb.ac.id

Abstract—2048 is a puzzle game created by Gabriele

Cirulli a few months ago. It was booming recently and

played by millions of people over the internet. People keep

searching for the optimal algorithm for solving the game.

Here are few approaches: minimax and expectimax

algorithm. The idea is to calculate all possible moves and

then select the best move by some functions. Alpha-beta

pruning is also used to speed up search time. The result

depends on the limit of the depth of the search tree. The

greater the limit, the better the result. At some point,

expectimax algorithm reaches 80% winning rate.

Index Terms—2048, Depth Limited Search, Expectimax,

Heuristic Function, Minimax, Search Tree

I. OVERVIEW OF THE GAME

Gabriele Cirulli is an Italian user interface designer and

web developer. In March, he built the game 2048, which

is actually a modification of some other game.

Unexpectedly, in a few weeks it became a worldwide hit

and played by more than 23 million people. [1]

The game itself is simple. You are given a 4×4 board,

where each tiles may contain a number inside it. The

numbers will always be a power of two. Initially, there

are only two numbered tiles with number 2 or 4. You may

alter the board by pressing arrow keys, and the tiles in the

board will move according to your moves. For example, if

you press left button, all of the tiles will go to the left. If

the numbers on the adjacent cells match, they will merge.

Consider the following board. If you move to the left, the

“2” at the top of the board will move to the top-left

corner, and the pair of “2” at the bottom will combine

creating a “4”. Additionally, after each moves, a new

number will appear on one of the empty cells uniformly.

The new number will always be “2” or “4”.

Image 1 Example of a move in 2048. After a “left” move,

the board on the left will become the right.

The objective of the game is to reach 2048 tile. This

can be extended to reaching maximum tile as possible.

Actually there is a scoring system applied to each moves,

but that will not be our concern in this paper.

II. THE ALGORITHMS: MINIMAX AND EXPECTIMAX

2048 can be viewed as a two player game, a human

versus computer game. The human’s turn is moving the

board to one of the four directions, while the computer’s

turn is placing 2 or 4 in one of the empty cells. Thus, we

will use minimax and expectimax algorithm.

Minimax and expectimax are the algorithm to

determine which move is the best in some two-player

game. Because of that, both of them usually called

decision rule. Actually there are other algorithms and

rules that may be better than two of them, but we will

only use those because the implementation is

straightforward.

A. Minimax Algorithm

Minimax is a decision rule for minimizing the possible

loss for a worst case scenario, or in the other word for the

maximum possible loss. That is why it is called minimax.

The rule originally used for a two-player zero-sum game

(a game which a player’s gain is exactly the same with the

loss of the other player’s, and vice versa).

The minimax theorem states that [2]

For every two-person, zero-sum game with finitely

many strategies, there exists a value V and a mixed

strategy for each player, such that

 Given player 2's strategy, the best payoff possible for

player 1 is V, and

 Given player 1's strategy, the best payoff possible for

player 2 is −V.

That means player 1’s strategy guarantees him a payoff

of V regardless of player 2’s strategy. This theorem was

first published in 1928 by John von Neumann in his paper

called “Zur Theorie der Gesellschaftsspiele Math” about

the game theory.

The graph below is the example of the search tree using

minimax algorithm.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

Image 2 Example of the search tree of the minimax

algorithm

The nodes the depth of which is even (note that the root

has depth of zero) are Player 1’s turn, which we want to

maximize its gain. The nodes with odd depth are the

Player 2’s turn. In every player 1’s turn, we want to

maximize the gain, and in every player 2’s turn, we

choose the minimum possible gain (gain here is player 1’s

gain, or equivalently player 2’s loss), so we can guarantee

to have at least such amount of gain.

The value of gain will be calculated when we reach the

leaf node. In most of the cases, it is not possible to reach

the “real leaf node” i.e. the situation where the game ends,

because the depth is too big. So, sometimes the minimax

algorithm is implemented with depth-limited search

instead of boundless depth-first search. Because we do

not know the exact value of gain at the leaf node, we will

only calculate the estimation of it, using some heuristic

function, which will be discussed in the next few chapter.

 For the sake of completeness, below is the pseudocode

of the minimax algorithm using depth-limited search. In

the code below, the player we want to maximize the gain

is player 1.

function minimax(node, depth, turn)
 if depth = 0 or node is a terminal node
 return the heuristic value of node
 if turn == player1
 bestValue := -∞
 for each child of node
 val := minimax(child, depth - 1, player2)
 bestValue := max(bestValue, val);
 return bestValue
 else
 bestValue := +∞
 for each child of node
 val := minimax(child, depth - 1, player1)
 bestValue := min(bestValue, val);
 return bestValue

(* Initial call *)
minimax(root, depth, player1)

Pseudocode 1 Minimax algorithm

The original naive minimax algorithm requires to

expand all the search tree, which can be very expensive in

terms of complexity. We can improve it by alpha-beta

pruning.

B. Minimax Algorithm with Alpha-Beta Pruning

Alpha-beta pruning is used to cut the number of nodes

in the search tree evaluated by minimax algorithm. It

stops completely evaluating a move when at least one

possibility has been found that proves the move to be

worse than a previously examined move, so we do not

need to evaluate it further. [3]

The pseudocode of alpha-beta pruning is showed

below.

function alphabeta(node, depth, α, β, turn)
 if depth = 0 or node is a terminal node
 return the heuristic value of node
 if turn == player1
 for each child of node
 α := max(α, alphabeta(child, depth - 1,
 α, β, player2))
 if β ≤ α
 break (* β cut-off *)
 return α
 else
 for each child of node
 β := min(β, alphabeta(child, depth - 1,
 α, β, player1))
 if β ≤ α
 break (* α cut-off *)
 return β

(* Initial call *)
Alphabeta(root, depth, -∞, +∞, player1)

Pseudocode 2 Alpha-Beta pruning over naive minimax

The term α is the lower-bound of the gain, and β is the

upper-bound. At player 1’s turn, we want to maximize the

gain by evaluating all possible moves. The value of α is

updated every time. When at some point we find that β is

not greater than α, or in the other words the lower bound

is not greater than the upper bound, then we can safely

stop here, because we have proved that there are better

moves. This is called β cut-off. The α cut-off is

equivalent.

C. Expectimax Algorithm

In minimax algorithm, we will choose the move based

on maximum (or minimum) gain. It means that we only

need the minimum or maximum value of the child nodes.

In expectimax algorithm, when we evaluate opponent’s

node, we will calculate all of possible moves, weighted by

the probability of the occurrence. In the other words, we

will calculate the expected value of the gain over all

possible cases. [4]

For better understanding, below is the pseudocode of

expectimax algorithm.

function expectimax(node, depth, turn)
 if depth = 0 or node is a terminal node
 return the heuristic value of node
 if turn == player1
 bestValue := -∞
 for each child of node
 val:= expectimax(child, depth-1, player2)
 bestValue := max(bestValue, val);
 return bestValue

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

 else
 expectedValue := 0
 for each child of node
 val:= expectimax(child, depth-1, player1)
 expectedValue += Probability[child]*val;
 return expectedValue

(* Initial call *)
expectimax(root, depth, player1)

Pseudocode 3 Expectimax algorithm

For the most of the cases, the probability of each nodes

will be the same. In our cases, 2048, the probability is

already known. The choice between the empty tiles is

uniform, and the probability of the occurence of 2 is 90%,

while the probability of 4 is 10%.

III. OBSERVATION OF THE GAME

For we already know the algorithm, from now on we

will only focus on the heuristic function that will be used

in our algorithm. Basically, a heuristic function is a value

that ranks alternatives in search algorithms. This value

will be greater if the condition is “better”. But which

better is better? We will build our heuristic function based

on some observation of the game 2048.

Image 3 The desired board to achieve 2048

Some observation that follows directly from playing

2048 is:

 To get a 2048 tile, we must combine two 1024 tiles

 To get two 1024 tiles, we must have a 1024 tile

together with two 512 tiles, and so on

So, we may want to transform our board into something

like the above diagram. However, the process is not

straightforward.

A. Empty Spaces

The obvious thing is to leave as much empty spaces as

possible. If there are many empty spaces, it is easier to

“breathe”, to move the tiles and to get even bigger

number.

B. Smoothness

The objective of the game is to get a 2048 tile, and to

get a certain tile we have to combine two tiles of smaller

values, and to combine them, these two tiles must be

adjacent. So, when the values of adjacent tiles are close,

we say that the grid is smooth. The term smoothness here

is determined by the difference between the values of

adjacent tiles. The smaller the differences, the smoother

the grid. Here is an example of non-smooth grid.

Image 4 An example of a non-smooth grid

Both 1024 tiles are adjacent with 4 and 2 tiles; the

smoothness is very small. Even in the case above, the

game is already over as there is no more available move.

C. Big Tiles in Border

The consequences of the smooth grid are we have to

keep the large values together, and leave empty spaces for

small pieces to transform into the bigger tiles. But

smoothness is not enough; below is the example of a

fairly-smooth grid, but has no available moves.

Image 5 When the big valued tiles are not in borders of

the grid, the game will over immediately

We can see that in the board above the big valued tiles

are placed in the middle of the grid. Any tiles located in

the middle of the grid are easily driven to anywhere.

However, to get our board like the neat board showed in

the Image 3 earlier, we need to keep large valued tiles in

the border of the grid. Moreover, we have to keep them in

the same side of board, so that the tiles can be easily

combined. Anyway, together with smoothness, the big

tiles will meet in the same border automatically, so we do

not have to check it explicitly.

Another observation shows that it is better if the largest

current tile is placed in the corner. The logical explanation

is the largest tile is the least possible tile to be combined

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

with the others. So, the corner is the best place for it.

Image 6 A situation where tiles with large values are

placed in the border of the board, but not in the same side

of the board

We will use those three observations above for building

our heuristic function, which will be explained further in

the next chapter.

IV. HEURISTIC FUNCTION

Based on the observations in the preceding chapter,

now we can determine the heuristic function that will be

used in our search algorithm.

A. Empty Spaces

We add this factor by simply give some large values to

all empty tiles we find.

B. Smoothness

Similar to above, we involve this factor by decreasing

the heuristic value by the total of all differences of all

adjacent pair of tiles. This value can be weighted by

multiplying it by some constant.

C. Big Tiles in Border

For every tiles in the grid, we give penalty if it is

placed in the middle of the grid. The amount of the

penalty is
 where is some constant. Varying this value

yields different result.

Optionally, we may include largest-value-in-corner

factor by giving reward to a position where tiles with

largest value placed in the corner.

Let us write the heuristic function defined above in a

more formal way. If denotes the number of empty tiles,

 denotes the total of all differences of adjacent pair of

tiles, and is the sum

 over all

tiles, then the heuristic value is

Where are some constants. In the

implementation, we choose , and and

 . The choice of is free, as long as it large enough

to dominates the heuristic value.

Additionally, if at some point we reach dead-end where

no more moves are available, the heuristic function will

return some very small value (-∞).

V. IMPLEMENTATION AND PERFORMANCE

Because the original 2048 was coded with javascript,

minimax and expectimax will also be implemented in the

same language. The integration between the AI (Artificial

Intelligence) and the game itself will be easier. But, the

disadvantage is that javascript is slow; the maximum

possible depth for the search tree is very limited. Later we

will show that the deeper the search tree, the better the AI

in getting a 2048 tile.

When the depth of minimax search tree is limited to

only 4, the winning rate is very low. But the performance

(in terms of speed) is very high. In one second the AI can

do more than 10 moves easily. The detailed statistics is

given below. The data is taken from one hundred run of

the same algorithm.

Highest Tile Percentage

256 1%

512 17%

1024 45%

2048 33%

4096 4%

Table 1 The statistics of minimax algorithm when the

depth is limited to 4

The maximum score achieved by the algorithm is

60484. As we can see, the most of the times the AI can

reach 1024. But in 45% of the runs, it fails to get 2048

tile.

Expectimax algorithm cannot be pruned like minimax

with alpha-beta pruning, because to calculate the expected

value, all configurations of child nodes must be

calculated. Actually there is another version of

expectimax, which combines minimax and expectimax,

called expectiminimax algorithm, that can also be pruned

by something similar to alpha-beta pruning, but we will

not implement it.

To achieve the same speed as minimax algorithm with

depth limit 4, the depth limit of expectimax should be less

than 2. When the depth limit is 3, the maximum number

of moves the AI can do is only three moves. When the

depth limit is increased to 4 or more, it takes more than 10

seconds to evaluate a move, so practically it is not

effective.

When the depth limit is 2, the performance and

winning rate is no different with minimax algorithm with

depth limit 4.

Highest Tile Percentage

256 5%

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

512 8%

1024 31%

2048 53%

4096 3%

Table 2 The statistics of expectimax algorithm when the

depth is limited to 2

Compared to minimax, this algorithm is slightly better.

The winnng rate (to achieve 2048 tile or better) of

minimax is 37%, while this one have 56% of winning

rate.

Now we will increase the depth limit and see if it has

better winning rate. If the minimax algorithm’s depth

limit is increased to 8, the AI can still calculate more than

3 moves per second. From 20 consecutive runs, the result

is given in the table below.

Highest Tile Percentage

512 5%

1024 25%

2048 55%

4096 15%

Table 3 The statistics of minimax algorithm when the

depth is limited to 8

The winning rate improves significantly, from only

37% to 70%. The chance of getting 4096 is even greater,

and there is only one run that ends with 512 as the largest

tile. The downside is that those 20 games take more than

6 hours, or equivalently one game takes about 20 minutes.

This is about 5-10 times slower than the earlier minimax

where the depth limit is only 4.

Expectimax algorithm is even showing better

improvement after increasing its depth limit to 3. The

average score is 39163, and the winning rate is 80%. The

detailed result is shown in the table below.

Highest Tile Percentage

1024 20%

2048 40%

4096 40%

Table 4 The statistics of expectimax algorithm when the

depth is limited to 3

It never fails to obtain 1024, and the probability to get

4096 tile is very high. It proves that the winning rate will

be increased as the depth limit increasing.

VI. BETTER IMPLEMENTATION AND PERFORMANCE

There are many methods and algorithms that can be

proved better [5]. Two of them will be explained here,

because the two of them used the same algorithm,

minimax and expectimax.

Image 7 The example of perfectly monotonic grid

 The first one can be seen in http://ov3y.github.io/2048-

AI/. It also used minimax algorithm with alpha-beta

pruning. The difference is the heuristic function. It

calculates three factors: smoothness, empty tiles, and

monotonicity. The last heuristic ensures that the values of

the tiles are all either increasing or decreasing along both

the horizontal and vertical directions. The diagram above

shows an example of a perfectly monotonic grid. This

heuristic will keep the board very organized. The other

two heuristics are similar with those mentioned in the

earlier chapter.

This AI is also implemented in javascript. The default

depth limit is around 6, and the AI can produce about 10

moves per second. Anyway, the winning rate is very high.

It obtains 2048 tile 90% of the times. While this one is

already good, there is even better AI which will be

explained below.

A user of stackoverflow with username nneonneo

developed expectimax algorithm to solve 2048. The

heuristic used is even simpler: the heuristic only

calculates empty tiles and add some large values if the

largest value is on the edge. But it has a clean winning

rate: 100%. It even reaches 16384 tile 13 times from 100

runs. The best run is showed below. The score is 377792,

an astonishing result.

Image 8 The best run of the nneonneo’s AI

What makes it has excellent performance is that the AI

is implemented using C++. The language is extremely

faster than javascript. It is capable to calculate over 100

millions operations per second. That is why the AI is able

to evaluate expectimax with maximum search depth of 8.

http://ov3y.github.io/2048-AI/
http://ov3y.github.io/2048-AI/

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

The AI is connected to the original 2048 game in the

browser via remote control. The average move rate is 6 to

10 moves per second. When the search depth is limited to

six, the move rate is increased to more than 20. That

makes this AI is the best, both in performance and the

winning rate.

VII. CONCLUSION

Both minimax and expectimax search algorithm along

with the heuristic function we use are fairly good to solve

the 2048 game. The winning rate is higher when we

increase the depth limit of the search tree. Minimax

algorithm with depth limit of 8 has around 75% winning

rate, while expectimax with depth limit of 3 has around

80% winning rate and has around 40% chance of getting a

4069 tile. Even better result can be achieved by

improving the heuristic function or implement the

algorithm better.

VIII. APPENDIX

All of the codes used for testing the algorithms are

uploaded to https://github.com/azaky/2048-AI. You can

also visit http://azaky.github.io/2048-AI/ to try the live

performance of the AI itself.

IX. ACKNOWLEDGMENT

The author thanks to Mr. Rinaldi Munir and Mrs.

Masayu Leylia Khodra for their teaching and

endorsement in the Strategy of Algorithms course during

this semester. The author also thanks to his friends and

fellow students of Informatics/Computer Science ITB for

their assistance all this time.

REFERENCES

[1] Cirulli, Gabriele. “2048, success and me”.
http://gabrielecirulli.com/blog. Accessed on May 13th 2014, 14.16

UTC +07.00.

[2] Osborne, Martin J., and Ariel Rubinstein. A Course in Game
Theory. Cambridge, MA: MIT, 1994. Print.

[3] Russell, Stuart J.; Norvig, Peter (2010). Artificial Intelligence: A

Modern Approach (3rd ed.). Upper Saddle River, New Jersey:
Pearson Education, Inc.

[4] Weld, Dan. “Adversarial Search, Artificial Inteligence Autumn

2012”.http://courses.cs.washington.edu/courses/cse573/12au/slides
/04-minmax.pdf. Accessed on May 17th 2014, 12.38 UTC +07.00.

[5] “What is the optimal algorithm for the game, 2048?”.

http://stackoverflow.com/questions/22342854/what-is-the-optimal-
algorithm-for-the-game-2048/22389702#22389702. Accessed on

May 17th2014, 19.23 UTC +07.00.

STATEMENT

I hereby declare that the paper I wrote is my own work. It

is not a copy nor a translation of someone else’s paper,

and not a plagiarism.

Bandung, May 18-th 2014

Ahmad Zaky | 13512076

https://github.com/azaky/2048-AI
http://azaky.github.io/2048-AI/
http://gabrielecirulli.com/blog
http://courses.cs.washington.edu/courses/cse573/12au/slides/04-minmax.pdf
http://courses.cs.washington.edu/courses/cse573/12au/slides/04-minmax.pdf
http://stackoverflow.com/questions/22342854/what-is-the-optimal-algorithm-for-the-game-2048/22389702#22389702
http://stackoverflow.com/questions/22342854/what-is-the-optimal-algorithm-for-the-game-2048/22389702#22389702

