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Abstract—2048 is a puzzle game created by Gabriele 

Cirulli a few months ago. It was booming recently and 

played by millions of people over the internet. People keep 

searching for the optimal algorithm for solving the game. 

Here are few approaches: minimax and expectimax 

algorithm. The idea is to calculate all possible moves and 

then select the best move by some functions. Alpha-beta 

pruning is also used to speed up search time. The result 

depends on the limit of the depth of the search tree. The 

greater the limit, the better the result. At some point, 

expectimax algorithm reaches 80% winning rate. 

 

Index Terms—2048, Depth Limited Search, Expectimax, 

Heuristic Function, Minimax, Search Tree  

 

I.   OVERVIEW OF THE GAME 

Gabriele Cirulli is an Italian user interface designer and 

web developer. In March, he built the game 2048, which 

is actually a modification of some other game. 

Unexpectedly, in a few weeks it became a worldwide hit 

and played by more than 23 million people. [1] 

The game itself is simple. You are given a 4×4 board, 

where each tiles may contain a number inside it. The 

numbers will always be a power of two. Initially, there 

are only two numbered tiles with number 2 or 4. You may 

alter the board by pressing arrow keys, and the tiles in the 

board will move according to your moves. For example, if 

you press left button, all of the tiles will go to the left. If 

the numbers on the adjacent cells match, they will merge. 

Consider the following board. If you move to the left, the 

“2” at the top of the board will move to the top-left 

corner, and the pair of “2” at the bottom will combine 

creating a “4”. Additionally, after each moves, a new 

number will appear on one of the empty cells uniformly. 

The new number will always be “2” or “4”.  

 

  

Image 1 Example of a move in 2048. After a “left” move, 

the board on the left will become the right. 

The objective of the game is to reach 2048 tile. This 

can be extended to reaching maximum tile as possible. 

Actually there is a scoring system applied to each moves, 

but that will not be our concern in this paper. 

 

II. THE ALGORITHMS: MINIMAX AND EXPECTIMAX  

2048 can be viewed as a two player game, a human 

versus computer game. The human’s turn is moving the 

board to one of the four directions, while the computer’s 

turn is placing 2 or 4 in one of the empty cells. Thus, we 

will use minimax and expectimax algorithm. 

Minimax and expectimax are the algorithm to 

determine which move is the best in some two-player 

game. Because of that, both of them usually called 

decision rule. Actually there are other algorithms and 

rules that may be better than two of them, but we will 

only use those because the implementation is 

straightforward. 

 

A. Minimax Algorithm 

Minimax is a decision rule for minimizing the possible 

loss for a worst case scenario, or in the other word for the 

maximum possible loss. That is why it is called minimax. 

The rule originally used for a two-player zero-sum game 

(a game which a player’s gain is exactly the same with the 

loss of the other player’s, and vice versa). 

The minimax theorem states that [2] 

 

For every two-person, zero-sum game with finitely 

many strategies, there exists a value V and a mixed 

strategy for each player, such that 

 Given player 2's strategy, the best payoff possible for 

player 1 is V, and 

 Given player 1's strategy, the best payoff possible for 

player 2 is −V. 

 

That means player 1’s strategy guarantees him a payoff 

of V regardless of player 2’s strategy. This theorem was 

first published in 1928 by John von Neumann in his paper 

called “Zur Theorie der Gesellschaftsspiele Math” about 

the game theory. 

The graph below is the example of the search tree using 

minimax algorithm. 
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Image 2 Example of the search tree of the minimax 

algorithm 

The nodes the depth of which is even (note that the root 

has depth of zero) are Player 1’s turn, which we want to 

maximize its gain. The nodes with odd depth are the 

Player 2’s turn. In every player 1’s turn, we want to 

maximize the gain, and in every player 2’s turn, we 

choose the minimum possible gain (gain here is player 1’s 

gain, or equivalently player 2’s loss), so we can guarantee 

to have at least such amount of gain. 

The value of gain will be calculated when we reach the 

leaf node. In most of the cases, it is not possible to reach 

the “real leaf node” i.e. the situation where the game ends, 

because the depth is too big. So, sometimes the minimax 

algorithm is implemented with depth-limited search 

instead of boundless depth-first search. Because we do 

not know the exact value of gain at the leaf node, we will 

only calculate the estimation of it, using some heuristic 

function, which will be discussed in the next few chapter. 

 For the sake of completeness, below is the pseudocode 

of the minimax algorithm using depth-limited search. In 

the code below, the player we want to maximize the gain 

is player 1. 

 

function minimax(node, depth, turn) 
    if depth = 0 or node is a terminal node 
        return the heuristic value of node 
    if turn == player1 
        bestValue := -∞ 
        for each child of node 
            val := minimax(child, depth - 1, player2) 
            bestValue := max(bestValue, val); 
        return bestValue 
    else 
        bestValue := +∞ 
        for each child of node 
            val := minimax(child, depth - 1, player1) 
            bestValue := min(bestValue, val); 
        return bestValue 
 
(* Initial call *) 
minimax(root, depth, player1) 

Pseudocode 1 Minimax algorithm 

 

The original naive minimax algorithm requires to 

expand all the search tree, which can be very expensive in 

terms of complexity. We can improve it by alpha-beta 

pruning. 

 

B. Minimax Algorithm with Alpha-Beta Pruning 

Alpha-beta pruning is used to cut the number of nodes 

in the search tree evaluated by minimax algorithm. It 

stops completely evaluating a move when at least one 

possibility has been found that proves the move to be 

worse than a previously examined move, so we do not 

need to evaluate it further. [3] 

The pseudocode of alpha-beta pruning is showed 

below. 

 

function alphabeta(node, depth, α, β, turn) 
     if depth = 0 or node is a terminal node 
         return the heuristic value of node 
     if turn == player1 
         for each child of node 
             α := max(α, alphabeta(child, depth - 1,  
                      α, β, player2)) 
             if β ≤ α 
                 break (* β cut-off *) 
         return α 
     else 
         for each child of node 
             β := min(β, alphabeta(child, depth - 1,  
                      α, β, player1)) 
             if β ≤ α 
                 break (* α cut-off *) 
         return β 
 
(* Initial call *) 
Alphabeta(root, depth, -∞, +∞, player1) 

Pseudocode 2 Alpha-Beta pruning over naive minimax 

 

The term α is the lower-bound of the gain, and β is the 

upper-bound. At player 1’s turn, we want to maximize the 

gain by evaluating all possible moves. The value of α is 

updated every time. When at some point we find that β is 

not greater than α, or in the other words the lower bound 

is not greater than the upper bound, then we can safely 

stop here, because we have proved that there are better 

moves. This is called β cut-off. The α cut-off is 

equivalent. 

 

C. Expectimax Algorithm 

In minimax algorithm, we will choose the move based 

on maximum (or minimum) gain. It means that we only 

need the minimum or maximum value of the child nodes. 

In expectimax algorithm, when we evaluate opponent’s 

node, we will calculate all of possible moves, weighted by 

the probability of the occurrence. In the other words, we 

will calculate the expected value of the gain over all 

possible cases. [4] 

For better understanding, below is the pseudocode of 

expectimax algorithm. 

 

function expectimax(node, depth, turn) 
    if depth = 0 or node is a terminal node 
        return the heuristic value of node 
    if turn == player1 
        bestValue := -∞ 
        for each child of node 
            val:= expectimax(child, depth-1, player2) 
            bestValue := max(bestValue, val); 
        return bestValue 
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    else 
        expectedValue := 0 
        for each child of node 
            val:= expectimax(child, depth-1, player1) 
            expectedValue += Probability[child]*val; 
        return expectedValue 
 
(* Initial call *) 
expectimax(root, depth, player1) 

Pseudocode 3 Expectimax algorithm 

 

For the most of the cases, the probability of each nodes 

will be the same. In our cases, 2048, the probability is 

already known. The choice between the empty tiles is 

uniform, and the probability of the occurence of 2 is 90%, 

while the probability of 4 is 10%. 

 

III.  OBSERVATION OF THE GAME 

For we already know the algorithm, from now on we 

will only focus on the heuristic function that will be used 

in our algorithm. Basically, a heuristic function is a value 

that ranks alternatives in search algorithms. This value 

will be greater if the condition is “better”. But which 

better is better? We will build our heuristic function based 

on some observation of the game 2048. 

 

 

Image 3 The desired board to achieve 2048 

Some observation that follows directly from playing 

2048 is: 

 To get a 2048 tile, we must combine two 1024 tiles 

 To get two 1024 tiles, we must have a 1024 tile 

together with two 512 tiles, and so on 

So, we may want to transform our board into something 

like the above diagram. However, the process is not 

straightforward.  

 

A. Empty Spaces 

The obvious thing is to leave as much empty spaces as 

possible. If there are many empty spaces, it is easier to 

“breathe”, to move the tiles and to get even bigger 

number. 

 

B. Smoothness 

The objective of the game is to get a 2048 tile, and to 

get a certain tile we have to combine two tiles of smaller 

values, and to combine them, these two tiles must be 

adjacent. So, when the values of adjacent tiles are close, 

we say that the grid is smooth. The term smoothness here 

is determined by the difference between the values of 

adjacent tiles. The smaller the differences, the smoother 

the grid. Here is an example of non-smooth grid. 

 

 

Image 4 An example of a non-smooth grid 

Both 1024 tiles are adjacent with 4 and 2 tiles; the 

smoothness is very small. Even in the case above, the 

game is already over as there is no more available move. 

 

C. Big Tiles in Border 

The consequences of the smooth grid are we have to 

keep the large values together, and leave empty spaces for 

small pieces to transform into the bigger tiles. But 

smoothness is not enough; below is the example of a 

fairly-smooth grid, but has no available moves. 

 

 

Image 5 When the big valued tiles are not in borders of 

the grid, the game will over immediately 

We can see that in the board above the big valued tiles 

are placed in the middle of the grid. Any tiles located in 

the middle of the grid are easily driven to anywhere. 

However, to get our board like the neat board showed in 

the Image 3 earlier, we need to keep large valued tiles in 

the border of the grid. Moreover, we have to keep them in 

the same side of board, so that the tiles can be easily 

combined. Anyway, together with smoothness, the big 

tiles will meet in the same border automatically, so we do 

not have to check it explicitly. 

Another observation shows that it is better if the largest 

current tile is placed in the corner. The logical explanation 

is the largest tile is the least possible tile to be combined 
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with the others. So, the corner is the best place for it. 

 

 

Image 6 A situation where tiles with large values are 

placed in the border of the board, but not in the same side 

of the board 

 

We will use those three observations above for building 

our heuristic function, which will be explained further in 

the next chapter. 

 

IV. HEURISTIC FUNCTION  

Based on the observations in the preceding chapter, 

now we can determine the heuristic function that will be 

used in our search algorithm. 

 

A. Empty Spaces 

We add this factor by simply give some large values to 

all empty tiles we find. 

 

B. Smoothness 

Similar to above, we involve this factor by decreasing 

the heuristic value by the total of all differences of all 

adjacent pair of tiles. This value can be weighted by 

multiplying it by some constant. 

 

C. Big Tiles in Border 

For every tiles in the grid, we give penalty if it is 

placed in the middle of the grid. The amount of the 

penalty is                                  
           where   is some constant. Varying this value 

yields different result. 

Optionally, we may include largest-value-in-corner 

factor by giving reward to a position where tiles with 

largest value placed in the corner. 

 

Let us write the heuristic function defined above in a 

more formal way. If   denotes the number of empty tiles, 

  denotes the total of all differences of adjacent pair of 

tiles, and   is the sum 

                                          over all 

tiles, then the heuristic value is 

 

              

 

Where       are some constants. In the 

implementation, we choose       , and      and 

    . The choice of   is free, as long as it large enough 

to dominates the heuristic value. 

Additionally, if at some point we reach dead-end where 

no more moves are available, the heuristic function will 

return some very small value (-∞). 

 

V.  IMPLEMENTATION AND PERFORMANCE 

Because the original 2048 was coded with javascript, 

minimax and expectimax will also be implemented in the 

same language. The integration between the AI (Artificial 

Intelligence) and the game itself will be easier. But, the 

disadvantage is that javascript is slow; the maximum 

possible depth for the search tree is very limited. Later we 

will show that the deeper the search tree, the better the AI 

in getting a 2048 tile. 

When the depth of minimax search tree is limited to 

only 4, the winning rate is very low. But the performance 

(in terms of speed) is very high. In one second the AI can 

do more than 10 moves easily. The detailed statistics is 

given below. The data is taken from one hundred run of 

the same algorithm. 

 

Highest Tile Percentage 

256 1% 

512 17% 

1024 45% 

2048 33% 

4096 4% 

Table 1 The statistics of minimax algorithm when the 

depth is limited to 4 

The maximum score achieved by the algorithm is 

60484. As we can see, the most of the times the AI can 

reach 1024. But in 45% of the runs, it fails to get 2048 

tile.  

Expectimax algorithm cannot be pruned like minimax 

with alpha-beta pruning, because to calculate the expected 

value, all configurations of child nodes must be 

calculated. Actually there is another version of 

expectimax, which combines minimax and expectimax, 

called expectiminimax algorithm, that can also be pruned 

by something similar to alpha-beta pruning, but we will 

not implement it. 

To achieve the same speed as minimax algorithm with 

depth limit 4, the depth limit of expectimax should be less 

than 2. When the depth limit is 3, the maximum number 

of moves the AI can do is only three moves. When the 

depth limit is increased to 4 or more, it takes more than 10 

seconds to evaluate a move, so practically it is not 

effective. 

When the depth limit is 2, the performance and 

winning rate is no different with minimax algorithm with 

depth limit 4. 

 

Highest Tile Percentage 

256 5% 
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512 8% 

1024 31% 

2048 53% 

4096 3% 

Table 2 The statistics of expectimax algorithm when the 

depth is limited to 2 

Compared to minimax, this algorithm is slightly better. 

The winnng rate (to achieve 2048 tile or better) of 

minimax is 37%, while this one have 56% of winning 

rate. 

Now we will increase the depth limit and see if it has 

better winning rate. If the minimax algorithm’s depth 

limit is increased to 8, the AI can still calculate more than 

3 moves per second. From 20 consecutive runs, the result 

is given in the table below. 

 

Highest Tile Percentage 

512 5% 

1024 25% 

2048 55% 

4096 15% 

Table 3 The statistics of minimax algorithm when the 

depth is limited to 8 

The winning rate improves significantly, from only 

37% to 70%. The chance of getting 4096 is even greater, 

and there is only one run that ends with 512 as the largest 

tile. The downside is that those 20 games take more than 

6 hours, or equivalently one game takes about 20 minutes. 

This is about 5-10 times slower than the earlier minimax 

where the depth limit is only 4. 

Expectimax algorithm is even showing better 

improvement after increasing its depth limit to 3. The 

average score is 39163, and the winning rate is 80%. The 

detailed result is shown in the table below. 

 

Highest Tile Percentage 

1024 20% 

2048 40% 

4096 40% 

Table 4 The statistics of expectimax algorithm when the 

depth is limited to 3 

It never fails to obtain 1024, and the probability to get 

4096 tile is very high. It proves that the winning rate will 

be increased as the depth limit increasing.  

 

 

VI.  BETTER IMPLEMENTATION AND PERFORMANCE 

There are many methods and algorithms that can be 

proved better [5]. Two of them will be explained here, 

because the two of them used the same algorithm, 

minimax and expectimax. 

 

 

Image 7 The example of perfectly monotonic grid 

 The first one can be seen in http://ov3y.github.io/2048-

AI/. It also used minimax algorithm with alpha-beta 

pruning. The difference is the heuristic function. It 

calculates three factors: smoothness, empty tiles, and 

monotonicity. The last heuristic ensures that the values of 

the tiles are all either increasing or decreasing along both 

the horizontal and vertical directions. The diagram above 

shows an example of a perfectly monotonic grid. This 

heuristic will keep the board very organized. The other 

two heuristics are similar with those mentioned in the 

earlier chapter. 

This AI is also implemented in javascript. The default 

depth limit is around 6, and the AI can produce about 10 

moves per second. Anyway, the winning rate is very high. 

It obtains 2048 tile 90% of the times. While this one is 

already good, there is even better AI which will be 

explained below. 

A user of stackoverflow with username nneonneo 

developed expectimax algorithm to solve 2048. The 

heuristic used is even simpler: the heuristic only 

calculates empty tiles and add some large values if the 

largest value is on the edge. But it has a clean winning 

rate: 100%. It even reaches 16384 tile 13 times from 100 

runs. The best run is showed below. The score is 377792, 

an astonishing result. 

 

 

Image 8 The best run of the nneonneo’s AI 

What makes it has excellent performance is that the AI 

is implemented using C++. The language is extremely 

faster than javascript. It is capable to calculate over 100 

millions operations per second. That is why the AI is able 

to evaluate expectimax with maximum search depth of 8. 

http://ov3y.github.io/2048-AI/
http://ov3y.github.io/2048-AI/
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The AI is connected to the original 2048 game in the 

browser via remote control. The average move rate is 6 to 

10 moves per second. When the search depth is limited to 

six, the move rate is increased to more than 20. That 

makes this AI is the best, both in performance and the 

winning rate. 

 

VII.   CONCLUSION 

Both minimax and expectimax search algorithm along 

with the heuristic function we use are fairly good to solve 

the 2048 game. The winning rate is higher when we 

increase the depth limit of the search tree. Minimax 

algorithm with depth limit of 8 has around 75% winning 

rate, while expectimax with depth limit of 3 has around 

80% winning rate and has around 40% chance of getting a 

4069 tile. Even better result can be achieved by 

improving the heuristic function or implement the 

algorithm better. 

 

VIII.   APPENDIX 

All of the codes used for testing the algorithms are 

uploaded to https://github.com/azaky/2048-AI. You can 

also visit http://azaky.github.io/2048-AI/ to try the live 

performance of the AI itself. 

 

IX.   ACKNOWLEDGMENT 

The author thanks to Mr. Rinaldi Munir and Mrs. 

Masayu Leylia Khodra for their teaching and 

endorsement in the Strategy of Algorithms course during 

this semester. The author also thanks to his friends and 

fellow students of Informatics/Computer Science ITB for 

their assistance all this time.  

 

REFERENCES 

[1] Cirulli, Gabriele. “2048, success and me”. 
http://gabrielecirulli.com/blog. Accessed on May 13th 2014, 14.16 

UTC +07.00. 

[2] Osborne, Martin J., and Ariel Rubinstein. A Course in Game 
Theory. Cambridge, MA: MIT, 1994. Print. 

[3] Russell, Stuart J.; Norvig, Peter (2010). Artificial Intelligence: A 

Modern Approach (3rd ed.). Upper Saddle River, New Jersey: 
Pearson Education, Inc. 

[4] Weld, Dan. “Adversarial Search, Artificial Inteligence Autumn 

2012”.http://courses.cs.washington.edu/courses/cse573/12au/slides
/04-minmax.pdf. Accessed on May 17th 2014, 12.38 UTC +07.00. 

[5] “What is the optimal algorithm for the game, 2048?”. 

http://stackoverflow.com/questions/22342854/what-is-the-optimal-
algorithm-for-the-game-2048/22389702#22389702. Accessed on 

May 17th2014, 19.23 UTC +07.00. 

 

 

 

 

 

 

 

 

STATEMENT 

I hereby declare that the paper I wrote is my own work. It 

is not a copy nor a translation of someone else’s paper, 

and not a plagiarism. 

 

Bandung, May 18-th 2014   

 
Ahmad Zaky | 13512076 

https://github.com/azaky/2048-AI
http://azaky.github.io/2048-AI/
http://gabrielecirulli.com/blog
http://courses.cs.washington.edu/courses/cse573/12au/slides/04-minmax.pdf
http://courses.cs.washington.edu/courses/cse573/12au/slides/04-minmax.pdf
http://stackoverflow.com/questions/22342854/what-is-the-optimal-algorithm-for-the-game-2048/22389702#22389702
http://stackoverflow.com/questions/22342854/what-is-the-optimal-algorithm-for-the-game-2048/22389702#22389702

