
Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

Simple and Fast Shiritori Program Using
Boyer-Moore Algorithm

Jeremy Joseph Hanniel - 135100261
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

113510026@std.stei.itb.ac.id

Abstract—Shiritori is a kind of word chain game originated
from Japan. Like most word chain game, the game is played by
chaining the word; the last syllable of the previous word
becomes the first syllable of the next word. There has been
many shiritori program created on the internet using rather
complex algorithms, but this paper tries to create the program
by simple algorithms with Boyer-Moore algorithm at its core to
speed up the search for words.

Index Terms—Boyer-Moore algorithm, database,

hiragana, katakana, kanji, romaji

I. SHIRITORI

Shiritori (し
s h i

り
ri

と
t o

り
r i

) or otherwise known as word chain
game in English; is a word game originated from Japan.
The game can be verbal or written, though usually it is
played verbally since it is more fun that way. Translated
literally, shiritori means “taking the end”. The game has
one main rule: players are required to name a word which
begins with the final kana of the previous word.

Figure 1 Example of Shiritori Program [10]

Before going deeper into the game, there is a basic

knowledge about Japanese language which is important to
know. Modern Japanese language has 4 components for
its writing system, which are:
• Kanji, which adopts from Chinese characters

• Kana, which is Japanese syllabary which consists
of hiragana and katakana

• Romaji, which is Romanized version of kanji and
kana, used to help foreigners understand Japanese

Figure 2 Differences in Japanese writing system

See from Figure 1 above that even though the word is

written differently, all of them actually mean the same,
which is “Japanese language”. Shiritori can be played
using all 4 components above. Figure 2 below depicts an
example on how the game is played.

Figure 3 Shiritori Game Example

Notice that hiragana word can be followed by katakana

word and vice versa. If kanji is used, the game becomes
more complex since one pronunciation can be represented
by more than one kanji character, but results in different
meaning of the word. There are more rules in Shiritori:
• Basic Rules

o Two or more people take turn to play.
o Only nouns, common pronouns, and place

names are permitted.
o The player who plays a word which ends by n

(ん) loses, since no Japanese word begins with
that character.

o Words that have been played before cannot be
repeated.

http://en.wikipedia.org/wiki/%E3%82%93

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

o Phrases connected by no (の) are permitted,
but only in those cases where the phrase is
sufficiently fossilized to be considered a word.

• Advanced Rules
o Words are limited to a certain genre.
o Instead of only using the last kana, the final 2

kana must be used as the beginning of the next
word. In this case, only the first kana must not
be n (ん).

o Every word played must be three or more
syllables long.

o Long vowels at the end of a word can be
terminated for the beginning of the next word.

In Shiritori, rules can be added arbitrarily on agreement

among players before playing. There are always more
rules to add to the excitement of the game, but for the
sake of simplicity, this paper only uses the basic rules.

II. BOYER-MOORE ALGORITHM
Pattern matching or also known as string matching is a

technique to check whether one perceived sequence of
characters matches with another. This technique is also
used to find a sequence of characters’ occurrences in
another sequence. Many algorithms have been found to be
able to perform such technique; one of which is Boyer-
Moore algorithm.

Boyer-Moore algorithm compares the pattern (the
sequence of characters to search) and the text (the
sequence of characters in which the pattern’s occurrence
is checked) from right to left. If the character in the text
which is compared with the rightmost pattern character
does not occur in the pattern at all, then the pattern can be
shifted by m positions after the text character. The idea of
Boyer-Moore algorithm is illustrated in Figure 3 below.

index 0 1 2 3 4 5 6 7 8 9 ...

text a b d a d a b a c b a
pattern b a b a c

shifted pattern

b a b a c

Figure 4 Boyer-Moore Algorithm Illustration [4]

Boyer-Moore algorithm first compares the last or
rightmost character of the pattern with character in the
text which has the same index. It is seen above that
pattern[4] = ‘c’ does not match with text[4] = ‘d’. To add
to this, ‘d’ is not found at all in pattern. In response to
this, the pattern is shifted as many as the pattern length
and the comparison begins again between pattern[4] = ‘c’
and text[9] = ‘b’. This method is called bad character
heuristics. In the case where pattern[4] ≠ text[4], but
text[4] = ‘d’ is found somewhere in the pattern, then the
pattern is shifted so that the occurrence of ‘d’ is aligned
with text[4] itself. See Figure 4 below for the illustration.

index 0 1 2 3 4 5 6 7 8 9 ...

text a b d a d a b a c b a
pattern d a d a c

shifted pattern

d a d a c

Figure 5 Bad Character Heuristics Illustration [4]

Again, comparison between pattern[4] = ‘c’ and

text[4] = ‘d’ results in a mismatch. However, ‘d’ is found
to have occurred twice in pattern, which is at index 0 and
2. Therefore, pattern is shifted so that the last occurrence
of ‘d’, pattern[2], is aligned with text[4].

Bad character heuristics can also fail. Look at
Figure 5 below.

index 0 1 2 3 4 5 6 7 8 9 ...

text a b a a d a b a c b a
pattern b a d a d

shifted pattern

b a d a d

Figure 6 Good Suffix Heuristics [4]

Illustrated in Figure 5 is that pattern[4] = text[4] = ‘d’

and pattern[3] = text[3] = ‘a’, but pattern[2] = ‘d’ does not
match with text[2] = ‘a’. If we use bad character
heuristics, then the Boyer-Moore algorithm would scan
the pattern for the mismatch character occurrences, which
is ‘a’, from right to left, which would result in pattern[3]
and pattern[1]. Looking at this result, the pattern is
supposed to shift by -1 position, which is undesirable.
Then comes another method of Boyer-Moore algorithm
named good suffix heuristics.

Notice in Figure 5 that ‘ab’ in the pattern has matched
with that in the text. Instead of shifting the pattern by -1
position like bad character heuristics would result, Boyer-
Moore algorithm scans for other ‘ab’ occurrences in the
pattern. Looking at the pattern, ‘ab’ is found again at
pattern[1] and pattern[2], so the pattern would be shifted
to align that occurrence. Having three kinds of methods to
deal with various conditions, Boyer-Moore algorithm
proves to be one of the more reliable pattern matching
algorithms in existence.

III. SHIRITORI GAME DATABASES

A. Necessary Databases
Not only is Shiritori simple, it is also a very good game

to learn about Japanese vocabulary. Nowadays the game
is not only played verbally, instead there are many
shiritori games on the computer and internet. On digital
platform, the most essential thing a shiritori game needs
is a database containing Japanese nouns, common
pronouns, and name of places. At user input, the game
will search the database to find the matching word to
validate the input. One simple means to do this is using a
pattern matching technique.

Before getting into the details about the algorithm, it is
wise to take a look at how the database is structured since

http://en.wikipedia.org/wiki/%E3%82%93

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

it can help reduce string comparison between the pattern
which is the user input and texts which are records in the
database. There are papers regarding shiritori which
promotes string matching directly by each Japanese
characters building the word, e.g. is た the same as な, is
ち the same as ろ, etc. This can be done as long as the
compiler that builds the program supports character
encoding which supports Japanese characters such as
Unicode. Even so, direct character matching works fine if
the character represents the same pronunciation, but a
problem arises when the word is represented in kanji. As
explained above, one way of pronunciation can be
represented in many kanji characters, making direct
character matching a little bit complex to do. Note that the
meaning of the words played is beyond our concern.
What we need to check is only whether the pronunciation
of the word does exist and understandable as Japanese
word.

Considering the issue above, one simple suggestion is
to do all string matching entirely by its pronunciation, that
is, by first converting kanji, hiragana, and katakana into
romaji, its Roman alphabet form. This way, 3 databases
are needed; the first being conversion of kanji characters
to romaji, the second being conversion of hiragana
characters to romaji, and the last being conversion of
katakana characters to romaji. The three databases can be
represented as Table 1, Figure 6, and Figure 7
respectively.

Table 1 Kanji Conversion to Romaji

Kanji Letters Pronunciation
1 2

大 dai tai
小 shoo
止 shi
行 koo gyoo
上 joo
下 ka ge
刀 too jin
刃 en
金 kin kon

Figure 7 Conversion from Hiragana to Romaji [5]

Figure 8 Conversion from Katakana to Romaji [6]

Since kanji characters number high in variety, their

representation in romaji is not disclosed here. However,
to help ease the making of the database, many
applications available through the internet offer
conversion from kanji to romaji automatically although
with uncertain preciseness. Note that if the player plays a
word already in romaji form, then there is no need for any
conversion. Finally, we need another database which
consists of all Japanese words in romaji form. This is the
database which is used to match user input and registered
Japanese words whereas the mentioned three databases on
the above are for the sake of converting user input only.
This database is the referred to as “database” from this
point on.

B. Database Indexing
Database indexing makes searches which are based on

indexing criteria complete faster. In the case of Shiritori
program, there are two interactions of databases used. The
first is to check whether user input exists in the database,
and the second is to pick a word to play as the next word.
Therefore, it is useful to index the database based on the

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

first syllable of the word. Not only this makes validation
process faster, it also makes searches for the next word
faster.

IV. SHIRITORI PROGRAM

The first thing Shiritori program would do is to check
whether the user input is registered as a valid Japanese
word. This is done by converting the user input from any
form to romaji. The first step of conversion is detecting
whether the input is kanji, hiragana, or katakana. The
main point is to check the Unicode of every inputted
Japanese character. For complete reference of the
Unicode representation for Japanese characters, see [7].
Here is an example algorithm to detect kanji, hiragana,
and katakana using JavaScript [9]:

if (/^[\u4e00-\u9faf]+$/.test(userInput)) {
 // userInput is a kanji
} else if (/^[\u3040-
\u309f]+$/.test(userInput)) {
 // userInput is a hiragana
} else if (/^[\u30a0-
\u30ff]+$/.test(userInput)) {
 // userInput is a katakana
}

Take note that input conversion is done character by

character. While the conversion process is running, the
program should extract the first syllable of the input. This
step is necessary to efficiently utilize the database which
has been indexed and sorted on the first syllable of each
word. This will make input validation faster because the
words compared on the database are only those which
start with the same syllable as the input. Other than
extracting the first syllable, it is very useful to also extract
the last syllable of the user input. The last syllable is used
to again utilize the database index to point to the words in
the database which start with the last syllable of user
input. This speeds up the process of picking the next word
to play.

One last step to further quicken the validation of user
input, words that are going to be matched with the input
can be qualified. This can be done by setting a condition
that the words compared must be the same length as the
user input for them to be matched. At this point, user
input クルマ that has been converted to “kuruma” would
only be compared with words in the database which also
start with the syllable “ku” and are 6-character long, such
as “kusuri”, “kurasu”, etc.

After all the process above, now is the time when string
matching really begins. To match user input with records
of Japanese words in the database, Boyer-Moore
algorithm is chosen as it is more preferable than brute-
force approach or Knuth-Morris-Pratt (KMP) algorithm.
This decision is based on experiment which results in
Table 1 below performed using Brute Force, KMP, and
Boyer-Moore animation program [8].

Table 2 Brute Force, KMP, and Boyer-Moore Efficiency

Text
(word in
database)

Pattern
(user
input)

Total Comparison
Brute-
Force

Knuth-
Morris-

Pratt

Boyer-
Moore

kusuri kuruma 3 7 1
kurasu kuruma 4 7 1

nihongo nichigo 3 9 3

The experiment on Table 1 tests total characters

comparison using the three basic pattern-matching
algorithms: Brute Force, KMP, and Boyer-Moore. It is
clearly seen that KMP algorithm would not be suited to
use for the game. The algorithm performs all character
comparison possible between the pattern and the text,
making it worse even from Brute Force algorithm. On the
other hand, Brute Force algorithm performs better with
fewer character comparisons than KMP, but still cannot
beat the efficiency Boyer-Moore algorithm. This way,
Boyer-Moore algorithm only performs many character
comparisons only if the text and the pattern have the same
first and last syllables.

If the search process successfully found an exact match
of the user input on the database, it means that the user
input a valid word. The next step is for the computer to
reply to the user. Notice that the last syllable of user input
has been extracted before in conversion process, so it can
be used directly to jump to the records of database which
contains words starting with the syllable. Here, the length
of the word does not matter anymore. The next word can
be chosen randomly, or if the program offers difficulty
feature, than it would, for example, choose words that end
with less common syllable for medium and hard
difficulty. This can also utilize database index with
grouping of easy, intermediate, and hard words in the
database.

V. CONCLUSION

Shiritori is a word chain game that can have many
ways of programming if built on computer or the internet,
and this paper only describes one of many ways of how
shiritori program works. Remember that the shiritori
game in this paper only uses the basic rules, whereas
optional and advanced features would need more
calculation and more complex structure. There are even
shiritori programs which do not use whole string
matching at its heart, but graph instead.

REFERENCES

[1] "Nihongo - Japanese writing - Katakana," [Online].
Available:
http://www.nihongostudy.com/aprenderj/escritura/kat
akana_e.php. [Accessed 15 December 2012].

[2] "Nihongo - Japanese writing - Hiragana," [Online].
Available:
http://www.nihongostudy.com/aprenderj/escritura/hir
agana_e.php. [Accessed 15 December 2012].

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

[3] P. Seyfi, "Shiritori: The Japanese word game |
Japanese LinguaLift blog," 14 December 2010.
[Online]. Available:
http://japanese.lingualift.com/blog/shiritori-japanese-
word-game/. [Accessed 17 December 2012].

[4] H. Lang, "Boyer-Moore algorithm," 23 November
2008. [Online]. Available:
http://www.inf.fh-
flensburg.de/lang/algorithmen/pattern/bmen.htm.
[Accessed 17 December 2012].

[5] "Learn Hiragana Alphabet," Copy Left, 2008.
[Online]. Available:
http://www.alfabetos.net/japanese/alfabeto-
hiragana/learn-hiragana.php.
[Accessed 21 December 2012].

[6] B. Kirk, "Katakana," 4 April 2011. [Online].
Available:
http://students.cis.uab.edu/bpkirk/Katakana.html.
[Accessed 21 December 2012].

[7] “Unicode Kanji Code Table” [Online]. Available:
http://www.rikai.com/library/kanjitables/kanji_codes.
unicode.shtml.
[Accessed 21 December 2012].

[8] “The Pattern Matching Algorithm Demo [Online].
Available:
http://www.enseignement.polytechnique.fr/informati
que/profs/Jean-Jacques.Levy/00/pc4/strmatch/e.html.
[Accessed 21 December 2012].

[9] K. Felix, “regex - Detecting a unicode character
(kanji) from a range of characters in Javascript? -
Stack Overflow”, 11 August 2011. [Online].
Available:
http://stackoverflow.com/questions/7150633/detectin
g-a-unicode-character-kanji-from-a-range-of-
characters-in-javascript.
[Accessed 21 December 2012].

[10] “Shiritori - しりとり - 尻取り” [Online]. Available:
http://shiritori.org/.
[Accessed 21 December 2012].

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 21 Desember 2012

Jeremy Joseph Hanniel

13510026

	I. Shiritori
	II. Boyer-Moore Algorithm
	III. Shiritori Game Databases
	A. Necessary Databases
	B. Database Indexing

	IV. Shiritori Program
	V. Conclusion
	References
	Pernyataan

