Derivation of An Existing Symmetric Watermarking Technique into Its Asymmetric Version.
Case Study: Wang Algorithm

Rinaldi Munir¹, Bambang Riyanto T², Sarwono Sutikno³, Wiseto P. Agung⁴
¹, ², ³School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia, Jl. Ganesha 10, Bandung 40132, Tel. +6222 25078135, fax. +6222 2539172
²PT. Telekomunikasi Indonesia, Jl. Gegerkalong Bandung
(rinaldi@stei.itb.ac.id, briyanto@lskk.ee.itb.ac.id, ssarwono@ieee.org, wiseto@telkom.co.id)

Abstract— This paper presents an asymmetric watermarking technique derived from Wang Algorithm, a symmetric watermarking technique. This asymmetric version uses secret watermark as private key and public watermark as public key. The public watermark has a normal distribution and the private watermark is a linear combination of the public watermark and a secret sequence. The detection process is implemented by correlation test between the public watermark and the received image. Experiments show that the asymmetric technique was proved as robust as its symmetric version against some typical image processings.

Index Terms—asymmetric watermarking, Wang Algorithm, derivation, correlation.

I. INTRODUCTION

Digital watermarking has been used widely as a tool for protecting copyright of digital multimedia data (e.g. images) [1, 2]. Many digital watermarking techniques for still images have been proposed [1-3]. The particular problem with the state-of-the-art watermarking techniques is that the majority of these schemes are symmetric: watermark embedding and detection use the same key. The symmetric watermarking scheme has a security problem. Because the watermarking algorithm is published, once attacker knows the secret key, the watermark not only can be detected, but it can be easily estimated and removed from the multimedia data completely without making any degradation and thereby defeat the goal of copyright protection.

A solution to solve the problem is the asymmetric watermarking scheme, in which different key(s) are used for watermark embedding and detection. An asymmetric watermarking system uses the private key to embed a watermark and another key – it is called the public key – to verify the watermark. Anybody who knows the public key could detect the watermark, but the private key cannot be deduced from the public key. Also, knowing the public key does not enable an attacker to remove the watermark [3]. Review of several existing asymmetric watermarking techniques can be found in [4].

We need intensive effort and time if we design a new asymmetric watermarking technique. Thus we think to derive a symmetric watermarking technique into its asymmetric version. Key of this transformation is based on process of generating the private key and the public key. In this paper, we choose an existing symmetric watermarking technique achieving very good results in robustness. We choose Wang Algorithm [5] because the algorithm achieve very good results in imperceptibility and robustness. We will compare performance between the symmetric watermarking and its asymmetric version.

II. WATERMARKING IN DCT DOMAIN

Current image watermarking methods can be grouped into spatial domain methods and transform domain methods. In spatial domain, we embed the watermark by directly modifying the pixel values of the original image. In transform domain, a transformation is first applied to the original image before embedding watermark. Then, the transform coefficients are modified to embed the watermark and finally the inverse transform is applied to obtain the watermarked image. Since the watermark embedded in the transform domain is irregularly distributed over the image after the inverse transform, the method make it more difficult for an attacker to read or modify the watermark [7]. Furthermore, embedding the watermark into the transform-domain can increase the robustness, when the watermarked image are tested after having been subjected to common image processings.

There are three main transform methods generally used, i.e. Fourier transform (DFT), discrete cosine transform (DCT), and wavelet transform (DWT). In this paper we use DCT method. The DCT can be applied to transform the whole image or image blocks (8×8 pixel). By referring to JPEG compression, watermarking that operates on 8×8-DCT blocks yields better robustness than that on the whole image [6].

The DCT allows an image to be divided into different frequency subbands: low, middle, and high frequency. Embedding the watermark into the low-frequency subbands can degrade the image quality, whereas high frequency components are easily discarded after low pass filtering or JPEG compression. Therefore, for balancing between image fidelity and robustness, most
watermarking techniques embed the watermark into the middle-frequency subbands.

III. WANG ALGORITHM

Wang [5] proposed a novel blind detection method for multiplicative robust watermarking. Given an image with size \(M \times N \); the image is divided into 8x8 blocks, then the DCT is applied to every sub-image. In order to satisfy the balance between the robustness and imperceptibility, the middle frequency coefficients are selected to embed the watermark by the zigzag scan in every sub-image. The watermark is a sequence that has Gaussian distribution with mean 0 and variance 1. There are 1000 watermarks generated and one of 1000 watermarks is chosen randomly to embed the original image. The multiplicative embedding rule is defined as

\[
I' = I(1 + \alpha W)
\]

(1)

where \(I' \) are the watermarked transform coefficients corresponding to the original transform coefficients \(I \), \(\alpha \) is the watermark strength and \(W \) is the watermark. The watermarked image is obtained after transforming the watermarked transform coefficients. Fig. 1 shows the embedding process.

![Fig. 1. Embedding process](image)

Watermark detection is realized by computing correlation between the transform coefficient and watermark. The middle frequency coefficients are selected by the same rule mentioned above. The correlation \(c \) is defined as

\[
c = \frac{1}{N} \sum_{i=1}^{N} |I'_i|W_i
\]

(2)

According to Eq. (2), whether a given watermark is present or not in the received image can be determined by comparing \(c \) with a specified threshold \(T \):

\[
\text{decision} = \begin{cases}
1 & , c \geq T \\
0 & , c < T
\end{cases}
\]

Decision = 1 indicates that the watermark is present in the received image, or decision = 0 if the received image don’t contain the watermark. Fig. 2 shows the detection process.

![Fig. 2. Detection process](image)

IV. ASYMMETRIC VERSION

We derive an asymmetric technique from Wang Algorithm. Key of this transformation is based on process of generating the private key and the public key. The public key should have a correlation with the private key. The private watermark is embedded into the image. User can perform an asymmetric detection using a correlation test between the public watermark and the received image.

In Wang Algorithm, the secret key is the watermark itself where it has normal distribution. In asymmetric version of Wang Algorithm, the private key and the public key is referred as the private watermark and the public watermark. We want the two watermarks to have normal distribution.

There exist numerous methods to generate the private watermark that are different but have a fixed correlation with the public watermark and both watermarks have normal distribution. One of them is by using statistics approach. In statistics, if we add two or more random variables as a linear combination where each of them has normal distribution, then the result has normal distribution too. Let \(X \) be a sequence with mean \(\mu_X \) and variance \(\sigma_X^2 \) and \(Y \) be sequence that independent from \(X \) with mean \(\mu_Y \) and variance \(\sigma_Y^2 \). A combination linear of \(X \) and \(Y \) is defined as

\[
Z = aX + bY
\]

(3)

where \(a \) and \(b \) is parameters. Sequence \(Z \) has the mean

\[
\mu_Z = a\mu_X + b\mu_Y
\]

(4)

and variance

\[
\sigma_Z^2 = a^2\sigma_X^2 + b^2\sigma_Y^2
\]

(5)

In generating the watermarks we have to ensure that the combination linear is secure. It means that the private watermark cannot be deduced from the public watermark. Also, knowing the public watermark does not enable an user to remove the embedded watermark from the watermarked image. This characteristic is realized by adding the public watermark with a secret sequence. Security of this asymmetric version depend on the secret sequence. Let \(W_p \) be the public watermark and \(R \) be the secret sequence, the private watermark can be obtained by adding \(W_p \) and \(R \) as

\[
W = W_p + R
\]
\[W_s = \beta W_p + (1 - \beta) R \]

where \(\beta \) is a parameter in \([0, 1]\) to control the compromise between the two sequences. In order to make the sequence \(R \) more secure, we encrypt \(R \) by a random permutation before adding with \(W_p \). Thus, eq. (6) can be written as

\[W_s = \beta W_p + (1 - \beta) \tilde{R} \]

where \(\tilde{R} \) is encrypted version of \(R \). Fig. 3 shows process of generating the public and the private watermark.

\[I' = I(1 + \alpha W_s) \]

In the detector side, both the original image and the private watermark are not needed. Using the public watermark, \(W_p \), the following correlation is computed:

\[c = \frac{1}{N} \sum_{i=1}^{N} I'_i W_{p_i} \]

After we set the threshold \(T \), the watermark detection is finished by the comparison between \(c \) and the threshold.

V. EXPERIMENT AND RESULTS

We apply our method to image watermarking by using MATLAB as programming tool. The test image is a 512 \(\times \) 512 gray image ‘Boat’. The public watermark is a 128 \(\times \) 128 real matrix that has a normal distribution with mean = 0 and variance = 1. The embedding strength \(\alpha \) is equal to 0.3 and parameter \(\beta \) is equal to 0.75. Distribution of the public watermark and the private watermark is shown in Fig. 4. From Fig. 4(b) we observe that shape of distribution graphics of the private watermark is like a bell as common normal distributions.

\[I' = I(1 + \alpha W_s) \]

In the detector side, both the original image and the private watermark are not needed. Using the public watermark, \(W_p \), the following correlation is computed:

\[c = \frac{1}{N} \sum_{i=1}^{N} I'_i W_{p_i} \]

After we set the threshold \(T \), the watermark detection is finished by the comparison between \(c \) and the threshold.

V. EXPERIMENT AND RESULTS

We apply our method to image watermarking by using MATLAB as programming tool. The test image is a 512 \(\times \) 512 gray image ‘Boat’. The public watermark is a 128 \(\times \) 128 real matrix that has a normal distribution with mean = 0 and variance = 1. The embedding strength \(\alpha \) is equal to 0.3 and parameter \(\beta \) is equal to 0.75. Distribution of the public watermark and the private watermark is shown in Fig. 4. From Fig. 4(b) we observe that shape of distribution graphics of the private watermark is like a bell as common normal distributions.

\[I' = I(1 + \alpha W_s) \]

In the detector side, both the original image and the private watermark are not needed. Using the public watermark, \(W_p \), the following correlation is computed:

\[c = \frac{1}{N} \sum_{i=1}^{N} I'_i W_{p_i} \]

After we set the threshold \(T \), the watermark detection is finished by the comparison between \(c \) and the threshold.

V. EXPERIMENT AND RESULTS

We apply our method to image watermarking by using MATLAB as programming tool. The test image is a 512 \(\times \) 512 gray image ‘Boat’. The public watermark is a 128 \(\times \) 128 real matrix that has a normal distribution with mean = 0 and variance = 1. The embedding strength \(\alpha \) is equal to 0.3 and parameter \(\beta \) is equal to 0.75. Distribution of the public watermark and the private watermark is shown in Fig. 4. From Fig. 4(b) we observe that shape of distribution graphics of the private watermark is like a bell as common normal distributions.

\[I' = I(1 + \alpha W_s) \]

In the detector side, both the original image and the private watermark are not needed. Using the public watermark, \(W_p \), the following correlation is computed:

\[c = \frac{1}{N} \sum_{i=1}^{N} I'_i W_{p_i} \]

After we set the threshold \(T \), the watermark detection is finished by the comparison between \(c \) and the threshold.

V. EXPERIMENT AND RESULTS

We apply our method to image watermarking by using MATLAB as programming tool. The test image is a 512 \(\times \) 512 gray image ‘Boat’. The public watermark is a 128 \(\times \) 128 real matrix that has a normal distribution with mean = 0 and variance = 1. The embedding strength \(\alpha \) is equal to 0.3 and parameter \(\beta \) is equal to 0.75. Distribution of the public watermark and the private watermark is shown in Fig. 4. From Fig. 4(b) we observe that shape of distribution graphics of the private watermark is like a bell as common normal distributions.

\[I' = I(1 + \alpha W_s) \]

In the detector side, both the original image and the private watermark are not needed. Using the public watermark, \(W_p \), the following correlation is computed:

\[c = \frac{1}{N} \sum_{i=1}^{N} I'_i W_{p_i} \]

After we set the threshold \(T \), the watermark detection is finished by the comparison between \(c \) and the threshold.

V. EXPERIMENT AND RESULTS

We apply our method to image watermarking by using MATLAB as programming tool. The test image is a 512 \(\times \) 512 gray image ‘Boat’. The public watermark is a 128 \(\times \) 128 real matrix that has a normal distribution with mean = 0 and variance = 1. The embedding strength \(\alpha \) is equal to 0.3 and parameter \(\beta \) is equal to 0.75. Distribution of the public watermark and the private watermark is shown in Fig. 4. From Fig. 4(b) we observe that shape of distribution graphics of the private watermark is like a bell as common normal distributions.

\[I' = I(1 + \alpha W_s) \]

In the detector side, both the original image and the private watermark are not needed. Using the public watermark, \(W_p \), the following correlation is computed:

\[c = \frac{1}{N} \sum_{i=1}^{N} I'_i W_{p_i} \]

After we set the threshold \(T \), the watermark detection is finished by the comparison between \(c \) and the threshold.

V. EXPERIMENT AND RESULTS

We apply our method to image watermarking by using MATLAB as programming tool. The test image is a 512 \(\times \) 512 gray image ‘Boat’. The public watermark is a 128 \(\times \) 128 real matrix that has a normal distribution with mean = 0 and variance = 1. The embedding strength \(\alpha \) is equal to 0.3 and parameter \(\beta \) is equal to 0.75. Distribution of the public watermark and the private watermark is shown in Fig. 4. From Fig. 4(b) we observe that shape of distribution graphics of the private watermark is like a bell as common normal distributions.

\[I' = I(1 + \alpha W_s) \]

In the detector side, both the original image and the private watermark are not needed. Using the public watermark, \(W_p \), the following correlation is computed:

\[c = \frac{1}{N} \sum_{i=1}^{N} I'_i W_{p_i} \]

After we set the threshold \(T \), the watermark detection is finished by the comparison between \(c \) and the threshold.
If the received image does not contain the watermark (in this experiment we use an unwatermarked 'Boat' image as input to detector), we get $c = 0.0093$ and there is not a significantly higher correlation output than the others (Fig. 6). We conclude that the image does not contain the watermark.

We have tested robustness of our method against various attacks using common image processings (JPEG compression, cropping, resizing, etc). We use Jasc Paint Shop version 6.01 as image processing software. For every attack, we set different thresholds, depend on the experiment to derive the threshold empirically. The experiments and results are explained as follows.

V.1. Experiment 1: JPEG Compression

We tested the robustness against JPEG compression with various extreme compression qualities: 0% and 5%. For compression quality 5%, the watermark can be detected well ($c = 0.8660$) and surprisingly for compression quality 0% the watermark still can be detected ($c = 0.4290$, $T = 0.7$). In the two experiments, the detector shows a significantly higher correlation than random watermarks, see Fig. 7 and 8 for details.

V.2. Experiment 2: Image Cropping

Image cropping will remove some watermark information. In our simulation, we cut unimportant part from the watermarked image, the missing part of the image is replaced with black pixels (see Figure 9(a)). In fact, we can always correctly detect the watermark because the correlation value ($c = 1.3266$) is still greater than T. In this case, we set $T = 0.8$ from the experiment (see Figure 9(b)).

IV.3 Experiment 3: Sharpening and Adding Noise

The watermarked image is sharpened several times (high-pass filtering operation) until their edges look sharper than the original version. We still detect the presence of the watermark (see Fig. 10, in this case we set $T = 3.0$ and $c = 8.3470$). We also add some noises like salt and peppers of 15%. The results show that the watermark can be detected (see Fig. 11, in this case we set $T = 1.0$ and $c = 1.2519$).
IV.4. Experiment 4: Dithering

We convert the watermarked image to a binary image by dithering operation. It means plenty of gray-level information lost. It is shown in Fig. 12 that the watermark still can be detected. The response to the right watermark is largest among the response to all the watermarks.

IV.5. Experiment 5: Resizing

The image watermarked is resized until 50% of the original size. To detect the watermark, the smaller image must be returned to original size (else the watermark can not be detected). We found that $c = 0.6656$ (we set $T = 0.7$) and this experiment shows that the watermark still can be detected (see Fig. 13(a)). For resizing up to 200% of the original image, the watermark still can be detected well (we found that $c = 1.6862$ and set $T = 0.5$) (see Fig. 13(b)).

IV.6. Experiment 6: Histogram Equalization

The watermarked image is adjusted so that distribution of gray-level is uniform by using histogram equalization operation (a typical low-pass filtering operation). Experiment shows that the watermark can be detected where $c = 3.5115$ and $T = 1.5$ (see Fig. 14).

VI. SECURITY ANALYSIS

If an attacker want to remove the watermark from the watermarked image, he (or she) must find \hat{R} in order to get W_s according to equation (7). Once W_s is calculated, the original image can be extracted by manipulation of equation (8) as follows:

$$I = \frac{I'}{(1 + \alpha W_s)}$$

(10)

The attacker knows W_s', α and β but he (or she) does’nt know \hat{R}. Because \hat{R} is encrypted version of R, the
attacker hard to find it. Let the attacker knows R, next he (or she) need know a random permutation used to encrypt R. Because cardinality of R is n, the attacker must try $C(n, n) = n!$ permutation to find the right permutation. Remember that n is large enough, it is about 25% of original image size, so that finding the right permutation needs $O(n!)$ computation. For $n = 10000$ as example, there are 10000! computation! We conclude it is impossible for attacker to deduce the private watermark from these public information.

V. CONCLUSION

In this paper an asymmetric watermarking technique for still images derived from its symmetric version has been proposed. This technique uses two watermarks; the first watermark is a public watermark used to public detection, and the second watermark is a private watermark that has a correlation to the public watermark. The private watermark is a linear combination of the public watermark and an encrypted version of a secret sequence. Security of this asymmetric technique is based on the difficulty of finding the secret sequence where it needs $O(n!)$ computation. Simulation have confirmed that this asymmetric technique is as robust as its symmetric version.

REFERENCES