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ABSTRACT Open-set face recognition on a small dataset with limited image samples per individual poses
a significant challenge and is a topic of active research. Therefore, this study investigated the problems of
open-set face verification and face identification on a dataset known as the ITB Frontal Profile Limited
Dataset (IFPLD), which included only one frontal and one profile image per individual. Various training
procedures were used to obtain a more appropriate network embedding for feature representation on the
dataset. Transfer learning was employed to improve the performance of the models by fine-tuning the
networks using a dataset with properties similar to those of the IFPLD. The results showed that the SimCLR
method generated the optimal network embedding for face verification on the Siamese network. The
prototypical network with an N-way-k-shot learning scenario where k-1 came from data augmentation
outperformed the Siamese network for face identification by a maximum 17.0% accuracy improvement.
The transformation from 1-shot learning to k-shot learning is critical for achieving high performance.

INDEX TERMS Open set face recognition, Siamese network, SimCLR, ArcFace loss, prototypical network.

I. INTRODUCTION
Deep learning-based face recognition systems have gained
a significant amount of praise owing to their high accuracy
on several near frontal face datasets such as Labeled Faces
In The Wild (LFW) [1], VGGFace [2], and MegaFace [3].
These public datasets share general characteristics such as
near frontal poses, less than 45◦ yaw, individuals of European
American or African descent, and no head cover attributes.
It is well-known that many deep face recognition systems
perform poorly when a dataset does not exhibit these char-
acteristics. Unfortunately, most faces captured in the wild do
not have this feature, leading to inaccuracies in the perfor-
mance of face recognition systems when applied to real-life
scenarios.

This study primarily focuses on face recognition problems,
including face verification and face identification, when the
system is trained using a small dataset with limited accessible
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poses and a restricted number of samples per person. Despite
the advent of more extensive databases, many public insti-
tutions maintain this limited database, including a limited
number of ID photographs for each individual and their per-
sonal information. The authors focused on frontal-to-profile
face recognition, where models can choose the appropriate
frontal image based on query data in profile images or
determine whether a pair of frontal and profile faces belong
to the same individual. However, a profile face is problematic
during face recognition, primarily because of partial occlu-
sions in the facial landmarks caused by yaw angle rotation.

A unique face dataset called the ITB Frontal Profile Lim-
ited Dataset (IFPLD) was created to address this issue,
as shown in Figure 1a. This dataset is distinct from the
others because each individual is represented by only two face
images, where the first is for the frontal face and the second
is for the profile face with a yaw angle of 90◦. In addition
to its size limitation, this database differs from others in that
some individuals wear head coverings, which obscure some
of their features. These constraints, including the number of
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photos per individual, permissible posture types, and distinct
attributes of each face, are significant obstacles to the face
recognition process.

Using IFPLD, multiple models of deep learning systems
based on Siamese network architecture for face verification
were evaluated. Several models were trained using various
methodologies to generate improved network embedding
vectors. The ArcFace loss function is considered state-of-the-
art for face recognition in some datasets [4]. According to
this study, the Siamese network with a CNN network that
has been fine-tuned with ArcFace loss and combined with
other learning methods provides some of the top results on
the IFPLD dataset. Additionally, the self-supervised learning
technique called SimCLR [5] is an alternative superior way
for generating an embedding network with a competitive face
verification performance.

This study explores two separate settings for face identifi-
cation. The first strategy employed Siamese network models
specifically trained for face verification to accomplish an
N-way-1-shot evaluation task for face identification in an
open test set. The second option is to train a prototypi-
cal network [6] on the IFPLD training dataset using an
N-way-1-shot learning scenario with modifications to the
original algorithm to overcome the sample per-class limita-
tion. Table 1 lists the symbols and acronyms used in this study
as references.

The contributions of this research can be summarized as
follows:

1. The dataset addresses the open-set face recognition
issue, with a small number of samples per person and a
small number of poses called the ITB Frontal Profile Limited
dataset (IFPLD).

2. Comparative research and step-by-step techniques for
generating an improved face image representation vector for
open-set face verification, such as metric learning through
Contrastive Loss or ArcFace loss and a self-supervised learn-
ing technique called SimCLR. The study showed that the
Network Embedding produced by SimCLR outperformsmet-
ric learning and is appropriate for face verification using the
Siamese network on the IFPLD.

3. A method for training a prototypical network for IFPLD
that utilizes augmentation to overcome the support and query
set limits during training and testing, thereby achieving
optimal performance for face identification problems on a
relatively small dataset. The research shows that the three
augmented data of frontal and profile faces provide the opti-
mal balance between processing speed and accuracy.

II. RELATED WORKS
Recent studies have extensively explored CNN-based feature
extraction for face recognition. This is primarily due to the
success of AlexNet, GoogleNet, ResNet, and other CNN-
based image classification models that defeated rivals in
ILSVR. This scenario causes deep learning-based solutions
to gain momentum in all fields of computer vision. One
of the state-of-the-art end-to-end deep learning-based face

TABLE 1. Nomenclature.

FIGURE 1. (a) Sample of IFPLD dataset where one person has one frontal
face and one profile face and (b) Sample of CFP dataset where one
person has ten frontal faces and four profile faces.

recognition systems, FaceNet [7], achieved an accuracy of
99.63% on the LFW dataset. However, on the more chal-
lenging Megaface dataset for the face identification task, its
accuracy drops to 70.49%.

Triplet loss is a major contributor to the performance of
FaceNet. It produces feature embeddings that are well-suited
for face classification by reducing the intra-class and increas-
ing inter-class variances. Researchers have produced several
variants of loss functions to enhance the discriminative
power of deep learning features, includingMarginal Loss [8],
SphereFace loss [9], ArcFace loss [4], and CosFace loss [10].
For example, Marginal Loss showed a 0.6% improvement
in face verification performance on the LFW dataset and a
1.7% improvement on the YFT dataset, achieving 99.48%
and 95.68% accuracy, respectively, compared to the default
softmax loss.

Several studies have focused on developing deep-learning
techniques for face frontalization to improve face recognition.
The aim is to standardize a profile face to its corresponding
frontal face. Cao et al. [11] developed a DREAM block to
generate a frontal embedding vector from a profile face,
which can be reconstructed into a frontal face image using a
GANmodel called Plug and Play Network [12]. On the IJB-A
dataset, this approach achieved 94.60% accuracy; however,
on the MS-Celeb-1M dataset, it achieved 94.40% accuracy.

Fariborz et al. introduced Coupled Conditional GAN [13],
a technique for latent space face verification that employed
twin GAN networks composed of Generator, Discriminator,
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andReconstruction networks to verify both frontal and profile
faces. The Generator network, a UNet auto-encoder network,
produces frontal and profile embedding vectors in a common
embedding space after training with Contrastive Loss [14].
For the IJB-A dataset, this approach achieved a verification
rate of 96.6%, and for CFP, it achieved a verification rate
of 96.2%. In contrast to IFPLD, the profile images in the
MS-Celeb-1M and IJB-A datasets rarely had a yaw angle
greater than 45◦ and did not feature any head covers, making
face frontalization more efficient. Another approach, Side
Face Correction GAN [15], utilizes a GAN model to correct
non-frontal face images to obtain frontal face images and
then extracts facial features for face recognition. This method
comprises two parts: generation and discrimination modules.

Since the feature-based model era, reinforcement learning
(RL) has been used in face recognition to adapt to various
variables and settings, enabling more robust and efficient
techniques. To overcome the imbalance problem of the face
dataset, the fair loss algorithm [16] employs Q Learning to
modify the margin value. This approach achieved 99.57%
accuracy on the LFW dataset, second to FaceNet among all
investigated methods. Fast-FAR [17] used RL to improve
the facial recognition speed without sacrificing accuracy by
adjusting the depth of the inference layer based on a decision
policy. Fast-FAR reduced the inference time by 14.22% for
LFW and 7.84% for CFP.

In addition to IFPLD, only a few well-known public
datasets contain frontal and profile faces that meet strict
criteria, including a yaw angle near 90◦. Among these is the
Celebrity Frontal Profile (CFP) dataset [18], which serves
as a benchmark for several state-of-the-art face recognition
techniques. It contains 500 celebrities, each with ten frontal
and four profile face images, for a total of 7000 face images.
In contrast to CFP, IFPLD has only one image for each frontal
and profile face and contains some faces with head covers not
found in CFP, creating additional complexity. Figure 1 shows
a comparison between the IFPLD and CFP.

The CFP dataset comprises two testing scenarios: Frontal
to Profile (CFP-FP) and Frontal to Frontal (CFP-FF). The
original implementation in this study showed that the face
verification accuracy in the CFP-FF scenario was 11% higher
than that in the CFP-FP scenario. This result showed a
significant challenge in identifying profile-to-frontal faces
compared with frontal-to-frontal scenarios. More recent
research has improved the performance of the CFP-FP face
verification. The ResNet model trained with the ArcFace
Loss function [4] reported 95.56% accuracy for the CFP-FP
scenario. This result represents a nearly 9% improvement
over the first deep feature implementation, which had an
accuracy of 84.91%.

Significant research has been conducted on few-shot learn-
ing for image categorization, but only a few studies have
explored its application to face recognition problems. As
previously mentioned, most face recognition research relies
on a large face dataset, whereas few-shot learning focuses

FIGURE 2. Siamese Network for face verification.

primarily on limited training data. The phrase ‘‘N-way-k-shot
learning’’ refers to the use of k samples of data for each of the
N classes of the subject, either as a query or support dataset.
When k is 1, there is only one sample per class, which is
suitable for the face recognition problem of IFPLD.

There are several few-shot-learning techniques based on a
data-level or parameter-level approach. For example, Match-
ing networks generate a weighted sum for each support image
label as the prediction, using an attention mechanism to
weight each support sample image based on its relevance to
the query image [19]. On the other hand, the Prototypical
network is one of the architectures for few-shot classification
that maps query data into the closest point called prototype,
representing a region of a particular class [6].

III. METHODS
The face verification problem is often solved using the
Siamese network architecture, which compares two inputs
and generates an output that indicates their similarity. The
Siamese network consists of two identical base networks
that share weights and process different images. Furthermore,
a probability value was obtained by comparing the results of
each network. Figure 2 shows the architecture of the Siamese
network used for face verification, where N1 and N2 are twin
CNNmodels with shared weights, and the output p represents
the probability that the input pair (X1, X2) belongs to the
same individual.

The use of the Siamese network for face verification and
face identification as a one-shot classification problem was
inspired by Koch et.al [20]. The architecture of the base
network used in Koch’s Siamese network served as a base-
line model, referred to as Koch Model. Another baseline
model was ResNet-18_IN, ResNet-18 pre-trained with the
ImageNet dataset, a commonly used CNN base network
for image classification. ResNet-18 was selected over other
ResNet families because testing on IFPLD showed that a
deeper version did not improve the performance.

Instead of using a Siamese network for face identification,
a Prototypical network was developed, whose base net-
work had been previously trained using a Siamese network.
These base networks were trained using methods that yielded
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the highest accuracy. To handle limited support and query
images, the 1-shot learning problem was modified to K-shot
learning, where K > 1. The K number of samples comprised
the original frontal or profile image with K −1 data augmen-
tation. Five image operations were employed to create these
additional samples: blurring, rotation, brightness adjustment,
horizontal flipping, and translation. The impact and number
of data augmentations required for the Prototypical networks
to operate at their optimum level were then analyzed.

During training, the Adam optimizer was selected as the
optimization method after comparing it with SGD (with
momentum) and RMSProp. The step-wise decay approach
was used to regulate the learning rate, which was adjusted to
a specific value after a particular epoch. The Early Stopping
mechanism was also used to prevent overtraining, which
could lead to overfitting. The highest accuracy model for the
validation data was saved for further use.

A. DATASET PREPARATION
IFPLD included 475 subjects, each with a frontal and profile
image as shown in Figure (Figure 1a), for a total of 950 face
images. Face images were cropped after detecting them with
the MTCNN, removing irrelevant parts, and producing face
image data. MTCNN is comprised of three-stage multi-task
CNNs to propose region candidates, refine the candidate
selections, and output bounded rectangles to represent facial
regions and their facial landmarks.

The dataset was divided into a training and validation set
of 380 subjects and a testing set of 95 subjects. This setup
was considered ideal for ‘‘Open set face recognition’’ because
the identity in the training data differed from the testing.
Therefore, facial data in the testing stage were absent from
the training data, and subject identities were different for face
verification or identification purposes.

To augment the limited data in the IFPLD, five pieces of
data were generated for each face image using translation,
horizontal flip, brightness modification, rotation, or blurring
operations. Consequently, each subject was represented by
six frontal and six profile face images. The translation opera-
tion shifted an image by (20,20) pixels to the right and down,
respectively. The rotation operation rotated an image by 10◦

in the clockwise direction, while the brightness modification
operation modified the image’s brightness and contrast by
0.7 gain and 0.2 bias coefficient. During the blurring process,
a (10,10) kernel was applied to an image.

Two testing data preparation schemes were used, depend-
ing on the type of task conducted.

1. Face Verification
The testing data were randomly generated by selecting two

pairs of faces from identical or different individuals, includ-
ing their augmented versions from the original 95 individuals
in the test class. Given a frontal image, a random number
determines whether a profile image is selected from the same
or a different class than the frontal image. This setup mirrored
how training data were obtained, and there were 1140 testing
data (95 × 12 faces per individual). Since 95 × 6 frontal

faces must be compared, the length of the face verification
test dataset is 570.

2. Face Identification
The testing data were randomly generated from the original

frontal and profile face images of 95 individuals in the test
class. The goal was to determine the matching frontal face
from a subset of N individuals, where N denotes a subset
of 95 testing profiles, given a sample of the profile face
image. The generation of testing data per episode is outlined
in greater depth in each approach employed, such as the
Siamese Network or the Prototypical Network. Furthermore,
the effect of online image augmentation was investigated in a
Prototypical network to establish optimum performance.

B. NETWORK EMBEDDING
The Feature representation of a face image plays a signif-
icant role in the face identification or verification process.
Typically, facial data features are generated by network
embedding from pre-trained backbones CNN architectures
such as ResNet, VggNet, or FaceNet. These architectures are
typically pre-trained using the ImageNet dataset containing
1000 classes. In a transfer learning scenario, a model trained
using data with characteristics similar to the problem data
provided better generalization.

The network embedding baseline consisted of the Koch
and ResNet-18_INmodels. Specifically, the KochModel was
a CNN network architecture developed by Koch et al. [20] for
addressing the one-shot learning problem using the Siamese
network. It performed well on datasets such as Omniglot and
MNIST. The second baseline was ResNet-18 trained using
ImageNet 1000 classes and abbreviated as ResNet-18_IN for
brevity.

The CFP dataset [18] was similar to IFPLD but had
more individuals and faces per person, and each person
in the dataset had ten frontal faces and four profile faces,
compared to just one frontal face and one profile face per
person in IFPLD, as shown in Figure 1.b). An ImageNet pre-
trained ResNet-18model was fine-tuned with the CFP dataset
using two different training scenarios: multiclass and binary
classification. In multiclass classification, the ResNet-18_IN
model was trained to recognize an identity from 500 indi-
viduals. In binary classification, the ResNet-18_IN model
determines whether a face image is a frontal (class 0) or
profile (class 1) face. After multiclass classification training,
this fine-tuned ResNet-18_IN model was called ResNet-
18_IN_CFP1. After binary classification, it was named
ResNet-18_IN_CFP2.

ResNet-18_IN was also fine-tuned using the ArcFace loss
function in the multiclass classification mode and named
ResNet-18_IN_CFP3. The Additive Angular Margin Loss,
known as ArcFace Loss [4], is a loss function and process for
generating highly discriminative features for face recognition
considered state-of-the-art in specific face datasets. It is a
modified softmax loss in angular space designed to circum-
vent the intra-class classification limitation of softmax loss.
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ArcFace loss function was defined using the equation
below.

L = −
1
N

N∑
i

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j/∈yi e
s cos θj

(1)

The hyperparameters m and s, indicating the additive angu-
lar margin and feature scale, respectively, were set to 0.35 and
30 for the best performance. The parameter m indicates the
distance between classes, while s modify the scale of the
logits. All three CFP fined-tuned ResNet-18_IN models are
called ResNet-18_IN_CFP* for easier reference.

While classification directly calculates and optimizes the
classification loss, the metric learning approach focuses on
optimizing the embedding loss before the classification layer;
hence, the objective is to create a distinctive and unique
embedding feature that accurately represents the input image.

The Siamese network is a commonly used architecture for
metric learning because it allows for producing and compar-
ing a set of embedding features generated by a twin network.
Two common scenarios for training Siamese networks are
training with Contrastive Loss [14] and Triple Loss [7]. The
contrastive loss function is defined as follows:

L =
1
2
((1− Y )D2

w + Y max(0, α − Dw)2) (2)

where Dw is a distance function such as the Euclidean dis-
tance, Y is the output label (0 or 1), and α denotes a margin
value > 0 indicating the radius in the embedding space. Two
feature pairs of the same class contribute only to the loss
function if distance Dw is within the margin value.
Triplet Loss is defined as:

L =
N∑
i

[∥f (xai )− f (x
p
i )∥

2
2 − ∥f (x

a
i )− f (x

n
i )∥

2
2 + α]+ (3)

The variables xai , x
p
i , and x

n
i represent the anchor, positive, and

negative data, respectively, and α is the margin error between
positive and negative pairs.

When training with Triplet Loss, the selection of triplet
scenarios can significantly affectmodel performance. To train
the IFPLD on the Siamese network based on the Koch and
ResNet-18_IN_CFP*models, a simple random selection pro-
cedure was used as follows:

1. Divide 475 classes into 380 classes for training,
95 classes for testing.

2. For each class, frontal and profile face data
were collected, including augmentation, which produced
2280 embedding vectors for each type.

3. Specify the maximum number of datasets.
4. A frontal face image was selected as anchor data for each

triplet. Furthermore, a profile face image with the same class
as the anchor was randomly chosen as the positive data, and
any random profile face with a class label different from the
anchor was selected as the negative data.

Another approach for training network embedding is Self-
Supervised Learning (SSL). In SSL, unlabeled data are input

FIGURE 3. SimCLR training implementation in the IFPLD dataset.

to a network that finds its feature representation based on a
particular loss function. Subsequently, the generated network
embedding is used for downstream-specific tasks such as
classification and segmentation.

A recently proposed SSLmethod is a Contrastive Learning
method called SimCLR, a state-of-the-art method success-
fully implemented for various datasets, including CIFAR10,
CIFAR100, and SUN397, none of which is a face dataset
[5]. SimCLRwas designed to maximize the feature similarity
between two augmented images. This was achieved through
learning with Contrastive Loss in the latent space. The loss
function used is known as the Normalized Temperature-
scaled Cross Entropy (NT-Xent).

Figure 3 shows the implementation of SimCLR training on
IFPLD. To train with SimCLR, a dataset was generated by
creating two different augmented versions of a face image in
IFPLD, whether profile or frontal face. These augmentations
were generated by passing an image through a series of
random image transformations such as cropping, horizontal
flip, rotation and resizing, changing brightness, contrast, and
saturation (random jitter). Furthermore, the two images were
inputted into a twin ResNet-18 network. Each embedding
vector was projected onto a higher dimensional space by a
network projector consisting of fully connected layers, pro-
ducing a 128-d projection vector.

The NT-Xent loss function measures the similarity
between pairs of projection vectors and is defined as follows:

li,j = −log(
e( sim(zi,zj)

τ
)∑2N

k=1 1[k ̸=i]e(
sim(zi,zk )

τ
)
) (4)

For each pair of augmentation data (z1, z2) considered as pos-
itive data, there were N-1 negative data, where N represents
the batch size. Temperature τ has a value ranging from 0 to 1.

C. FACE VERIFICATION ON IFPLD DATASET
The Siamese network with a classification layer, as shown
in Figure 2, produces the probability of input pairs from
the same individual. If the probability p ≥ 0.5, the input
pair is from the same person, otherwise, they are different
individuals.
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FIGURE 4. Prototypical Network for face identification on IFPLD dataset.

TABLE 2. Siamese network configuration for several scenarios.

Several base models of Siamese network have been
investigated. These models were trained using the methods
described in the previous section, such as the Koch Model
based on the architecture proposed byKoch et al. [20], and the
ResNet-18_IN and ResNet-18_IN_CFP* models described
above.

Table 2 lists the configuration of the classification layers
for each models.

D. FACE IDENTIFICATION ON IFPLD DATASET
Few-shot-learning is a machine learning problem that arises
when the available data, denoted as E, consists of a limited
number of labeled samples for a given Task T. In the case of
IFPLD, each person was represented by one frontal and one
profile face image, making it a suitable setup for implement-
ing N-way-1-shot classification where N is the number of
individuals to be compared that could be selected as needed.
Instead of training a network using the entire concept of
Few-Shot-Learning, a Siamese network for face verification
can be used to identify an individual’s identity because its
output is the probability that the input pair comes from the
same individual.

For example, from 95 individuals in the test class, 20 ran-
domly selected individuals were denoted as N. One person

was then randomly chosen from the 20 individuals to rep-
resent the class for the query data. Notably, the query data
represented the profile face of the selected class. The query
data were then compared with the frontal faces of the remain-
ing 20 individuals to determine the highest probability of a
match. The identity of the individual whose frontal face was
used as the input was revealed by the highest probability.
This process is repeated for a specified number of episodes
or trials. Koch et al. [20] used 400 episodes with N=20
support classes for an N-way-1-shot evaluation in evaluating
a Siamese network. In the experiment, the episode number
was set to 400 or 1000, and N was varied with values of 5,
20, and 40.

Suppose a query profile face x belongs to one of the
individuals, d in class C, where d ∈ C . Each person in C
has a collection of frontal face datasets xc or {xi}i=Ci=1 called
support sets. To determine the identity of d based on similar-
ity, a query is performed for pairs (x, xi) where i = 1, . . . ,C .
In the case of a Siamese network for binary classification,
the identity of individual d was revealed by class i with the
highest probability value p:

d = argmax
c

(p(c)) (5)

It is preferable to train a network with the N-way-k-
shot learning principle to directly learn class representations
or distance measures for face identification rather than
relying on the 1-shot-learning evaluation of the Siamese net-
work [21]. A popular method for few-shot-learning is the
Prototypical network, which has been used to achieve state-
of-the-art results on standard few-shot-learning-oriented
datasets such as Omniglot and Mini ImageNet [6].

The Prototypical network approach involves constructing
prototypes and assessing the similarity between the query
data and prototypes for classification purposes. The mean of
a collection of embedding vectors of the same class in the
CNN’s feature space was recorded to determine the proto-
type point. The class to which the query data belonged was
identified by measuring the distance between the query data
and the class prototypes in the feature space.
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Assuming that a CNN model is defined as an embedding
function fφ : RD→ RM where φ is a learnable parameter, D is
the dimension of the input, and M denotes the dimension
of the embedding vector, the prototype for class k or ck is
defined as follows:

ck =
1
|Sk |

∑
(xi,yi)∈Sk

fφ(xi) (6)

Let S be the support set of N labeled examples, defined
as S = {(x1, y1), (x2, y2), . . . , (xN , yN )}, where xi ∈ RD is the
D-dimensional embedding vector.

To implement Prototypical networks in IFPLD, a CNN
model was trained using methods to generate embedding vec-
tors of Support and Query sets. The base model that exhibited
the best performance in face recognition using the Siamese
network was selected. Separating training and testing data
into Support and Query sets is crucial for few-shot learning.
N classes were randomly selected from 95 test samples, and
up to five augmented images were generated on the fly for
each frontal face, bringing the total number of images per
class to six. Therefore, when N = 5, the Support set data
contained 30 images. For each class in N, the profile face
matching that class is selected as the query set data.

As shown in Figure 4, each episode included NC randomly
selected classes from the 95 available test classes, divided
into Support and Query sets, each consisting of K images.
For the Support set, the first image was the original frontal
image, and the remaining K-1 images were generated from
data augmentation. Query data were selected by matching N
support classes with appropriate profile images and K-1 data
augmentation.

The Support and Query sets are fed into a CNN model
to produce embedding vectors in the same feature space.
The prototypes for each class in the support set were then
calculated as shown in Figure 4, where CA and CB represent
class A and class B, respectively.

The yellow embedding query data in the figure min-
imize the distance between each sample and its respec-
tive class prototype. The loss function is defined as
J (φ) = −log(pφ(y = k|x)).

pφ(y = k|x) =
e−d(fφ (x),ck )∑
k ′ e
−d(fφ (x),ck′ )

(7)

The distance function between the embedding vector of the
query data and prototype ck is denoted as d. The class of query
data is determined by the prototype closest to the embedding
vector.

Algorithm 1 presents the training algorithm for the Proto-
typical network on IFPLD for embedding network fφ given
a training episode Neps. Four distinct training scenarios were
analyzed, each focusing on the number of instances of Neps
and NC combinations to be used during a single training
session. Neps represents the number of episodes for train-
ing few-shot-learning, and values of 400 and 1000 were
selected, as in the Siamese network evaluation. For a given

TABLE 3. Accuracy of siamese network models for face verification.

Neps value, NC was selected from the 5, 20, 40, and 95 val-
ues. For the Support set Si and Query set Qi, the total data
per class was six, with one image representing the original
frontal/profile and five representing augmented data. To facil-
itate the training, N-way-1-shot learning was transformed
into N-way-6-shot learning. Model 1 corresponded to the
training episode model when N = 5, Model 2 had N = 20,
Model 3 corresponded to N= 40, and Model 4 corresponded
to N = 95, equivalent to the number of IFPLD test classes.
All training models were saved for testing the unseen

95 test classes. During testing, the effect of various values
of N and K of test data on the network performance of each
model were examined. Similar procedures as in the Siamese
network evaluation for face identification were used, where
the number of episodes Neps was (400, 1000), episode class
number NC was (5,20,40), and Support set Si or Query set
(Qi) was (1, · · · , 6). Algorithm 2 shows the complete steps
for testing the IFPLD with a trained Prototypical network.
The input included the trained model fφ , data testing D, NQ
and Neps.

IV. RESULT AND DISCUSSION
A. FACE VERIFICATION
The experimental results for all Siamese network configura-
tions for the open-set face verification problem on IFPLD,
measured in terms of accuracy and F1 score, are listed in
Tables 3 and 4, respectively. A Siamese network was fed with
a randomly selected list of pairs of frontal and profile faces
from individuals that were not included in the training dataset.

Table 3 shows the highest accuracy value (93%) marked
in red. This value was obtained by the model with the
backbone network ResNet-18_IN_CFP1 and then trained
using the SimCLR method. This was followed by the
ResNet-18_IN_CFP3 and ResNet-18_IN_CFP3 + Triplet
Loss networks.

Among the models, the baseline Koch model Siamese
network scored the lowest at 87 %. However, the base-
line ResNet-18_IN Siamese network performed better than
the Koch and some ResNet-18_IN_CFP* models, including
the one trained with Contrastive loss. The base network
configuration played a significant role in the performance,
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Algorithm 1 The following are the training steps for prototypical networks used in face identification on IFPLD. Let N
= the number of the training set samples, K is the number of training classes (380 training classes for IFPLD dataset),
NC ≥ K is the number of class per episode, NS is the number of support example per class, NQ is the number of query
example per-class. Neps refers to the number of training episodes. RandomSample(S, N) is a set of randomly chosen N
elements from S without replacement. GenerateDataAug(S, A) is an operation to generate several data augmentations
for each original IFPLD image in S. ComputeLoss(k) calculates the loss function of model k. UpdateModel(fφ ,J) is used
to update model fφ by the value of loss function J

Input : Initial model fφ , Training set D = {(x1, y1), ·, (xN , yN )}, where each yi ∈ {1, · · · ,K }, Neps
Output:Models of all NC option and selected Neps

1 NS ← 1
2 NQ← NS
3 NC ← {5, 20, 40, 95} ; /* Set no class per-episode */
4 NAug← 5 ; /* Set no of augmented data */
5 for i in NC do
6 for e in {1,· · · ,Neps} do
7 V ← RandomSamples({1, · · · ,K }, i) ; /* Select random i classes for episode */
8 for j in {1,· · · ,i} do
9 Sj← RandomSamples(DVj ,NS ) ; /* Select random support data for class j */
10 Qj← RandomSamples(DVj\Sj,NQ) ; /* Select random query data for class j */
11 Sj← Sj + GenerateDataAug(Sj,NAug) ; /* Add data augmentation to Sj */
12 Qj← Qj + GenerateDataAug(Qj,NAug) ; /* Add data augmentation to Qj */
13 cj = 1

|Si|

∑
(xi,yi)∈Sj fφ(xi) ; /* Calculate prototype for class j */

14 dj = d(fφ(Qj), cj) ; /* Determine distance of point Qi to ck */
15 end for
16 J = ComputeLoss(i)
17 UpdateModel(fφ , J)
18 end for
19 end for

Algorithm 2 Testing steps for the prototypical network for face identification on IFPLD Dataset are outlined below.
Let N = the number of the testing set samples, K is the number of testing classes, NC ≥ K is the number of class
per episode, NS is the number of support example per class, NQ is the number of query example per-class: [2, · · · , 6].
RandomSample(S, N) is a set of randomly chosen N elements from S without replacement. GenerateDataAug(S, A)
is an operation to generate Several data augmentations for each original IFPLD image in S. ComputeAccuracy(i, dk )
measures the accuracy based on distance query data of class i to ck
Input : Trained model fφ , Testing set D = {(x1, y1), ·, (xN , yN )}, where each yi ∈ {1, · · · ,K }, NQ and Neps
Output: Performance Accuracy P

1 NS ← 6
2 NC ← {5, 20, 40}
3 for e in {1,· · · ,Neps} do
4 V ← RandomSamples({1, · · · ,K },NC )
5 for i in {1,· · · ,NC} do
6 Si← RandomSamples(DVi , 1)
7 Qi← RandomSamples(DVi\Si, 1)
8 Si← Si + GenerateDataAug(Si,NS − 1)
9 Qi← Qi + GenerateDataAug(Qi,NQ − 1)
10 ci = 1

|Si|

∑
(xi,yi)∈Si fφ(xi)

11 di = d(fφ(Qi), ci)
12 P = ComputeAccuracy(dk )
13 end for
14 end for

and the ResNet-18_IN model performed better than Koch
Model. ResNet-18 has deeper layers than the Koch model,

but the number of trained parameters is much smaller. The
number of parameters for the Koch-based Siamese network
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TABLE 4. F1 Score of siamese network models for face verification.

was 38 million, while ResNet-18 was only 11.7 million or
70% less.

As shown in Tables 3 and 4, the ResNet18_IN_CFP*-
based Siamese network achieved higher performance metrics
for face verification than the baseline Koch model, but in
some scenarios, it was not better than ResNet-18_IN. In
terms of accuracy, the network with the highest performance,
such as the ResNet-18_IN_CFP1 + SimCLR model, was
clearly superior to the baseline. The accuracy increased by
13% compared with the Koch-based model and by 2% com-
pared with the ResNet-18_IN. This significant improvement
demonstrated that training networks using SimCLR methods
was superior to other training methods.

Moreover, the Koch model was not pre-trained, high-
lighting the advantages of transfer learning, where
ResNet-18_IN_CFP* was ImageNet-trained ResNet-18 and
fine-tuned with the CFP dataset. This pre-trained and
fine-tuned scenario produced a model whose weights were
initialized to understand the faces in IFPLD better.

The ResNet-18_IN_CFP* based Siamese network model
with network embedding trained with Contrastive Loss or
Triplet Loss exhibited better accuracy than the baseline Koch
but less than ResNet-18_IN or ResNet-18_IN_CFP1 + Sim-
CLR. ResNet-18_IN_CFP3 performed equally or slightly
better than ResNet-18_IN_CFP1 + SimCLR did. The appar-
ent limitation of IFPLD with a stark contrast of the yaw
angle between the frontal and profile faces made it difficult
for the network to learn using Contrastive Loss. This was
because when the distance vectors of the images from the
same profile were greater than the margin, the network did
not learn. Regarding the Triplet loss-based network embed-
ding, the simple method of generating a triplet dataset affects
the generated network embedding. Moreover, ArcFace loss
methods provided better separation for the inter-class embed-
ding vectors and outperformed the triplet loss networks.

Among themodels investigated for the Open Set Face Veri-
fication problem, which included four metrics and contrastive
learning methods, the three ResNet-18_IN_CFP*+ SimCLR
models produced the best accuracy on average compared

to the other training methods, which was 0.91. From the
f1-scores in Table 3, ResNet-18_IN_CFP1 + SimCLR
received the most top spots for each category, followed by
ResNet-18_IN_CFP3 + Triplet Loss.

B. FACE IDENTIFICATION
As previously mentioned in Section III-D, the Siamese net-
work was capable of performing the open set face verification
task by outputting a probability value that could be used for
face identification by matching a pair of frontal and profile
face images using the N-way-1-shot learning principle, where
N represents the number of individuals to be matched.

Table 5 shows the accuracy of various Siamese network
models with the number of episode trials T as 400 and 1000,
and the results indicated that the base models trained using
ArcFace Loss or ResNet-18_IN_CFP3 in several training
method categories, such as Contrastive Loss, Triple Loss,
and SimCLR, provided the best performance. The highest
accuracy was achieved by the ResNet-18_IN_CFP3+ Triplet
Loss model, followed by the ResNet-18_IN_CFP1 + Sim-
CLR and the ResNet-18_IN_CFP3 + SimCLR, which had
a maximum difference of 10% from the top for different
values of N. The network embedding generated by training
the Siamese network using the ArcFace Loss Function on
IFPLD provides a unique and distinctive embedding vector
for face identification tasks in the N-way-1-shot scenario.

Several observations can be made from the Siamese net-
work Face Verification and Face Identification results:

1. On average, ResNet-18_IN_CFP* + SimCLR demon-
strated better accuracy than the other training methods for
the same type of ResNet-18_IN_CFP*. SimCLR provided
an advantage over other methods; for example, by com-
paring ResNet-18_IN_CFP1 + SimCLR with ResNet-
18_IN_CFP1 + Triplet Network, there were 3.0% and 2.0%
improvements in face verification and face identification
accuracy, respectively. The only exception was ResNet-
18_IN_CFP3+ Triplet Loss which performed better than the
SimCLR version.
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TABLE 5. Siamese network one shot evaluation.

TABLE 6. Prototypical network performance on test class for T=400.

2. Fine-tuning the ResNet-18_IN network with the Arc-
Face Loss Function on IFPLD generated a unique and
distinguishable network embedding vector for N-way-1-shot
face identification tasks. Using this fine-tuned base network
in the Siamese network with relevant learning methods, such
as SimCLR andTriplet Loss, led to an improved performance.

3. Face Identification is amulticlass classification problem.
This makes the multiclass fine-tuning (CFP1) model more
suitable for this task than the binary classification (CFP2)
model. Consequently, the ResNet-18_IN_CFP1 models per-
formed better than the ResNet-18_IN_CFP2 models in most
cases.

The Prototypical network with a base CNN derived from
network embedding within the Siamese network for face
verification was trained in an N-way-6-shot learning scenario
and used for face identification with 95 test classes that
had not been seen before. As previously stated, the original
method of the Prototypical network was modified to enable
N-way-1-shot learning, where k > 1 and k-1 additional data
were obtained through data augmentation. Table 6 shows
the performance of the Prototypical networks using ResNet-
18_IN_CFP1 + SimCLR base network, where the number
of testing episodes T was set to 400, and the number of
support images NS and query image NQ = 6. Comparing
Tables 5 and 6, the Prototypical network was substantially
more effective than the Siamese network for face identifica-
tion. Training a Prototypical network in an episode containing
NC = 95 classes andNS= 6 (Model 4) yielded the best results
after evaluating testing data with varied N and K scenarios.
The best-performing Siamese network model was improved

FIGURE 5. Effect of data augmentation in prototypical network.

by 6% for N=5, 9% for N=20, and 17% for N=40 by the
Model 4 Prototypical network.

As shown in Figure 5, comparing the four models for the
test data with N=40 demonstrated a significant impact of the
data augmentation on the performance of the Prototypical
network. When no data augmentation was applied or the
original 40-way-1-shot learning procedure was implemented,
the accuracy was less than 0.05. However, a significant
improvement was observed with the introduction of data aug-
mentation. The highest average performance was achieved
when K=3 or two augmented data other than the origi-
nal frontal/profile images were utilized. After this process,
no further improvement in performance was observed. There-
fore, it was concluded that the optimal number of augmented
datasets is three.

V. CONCLUSION
This study investigated face recognition techniques relevant
to IFPLD, a dataset comprising only one frontal and one
profile face image per subject. The Siamese networkwas used
for face verification, and it achieved an accuracy of 93%when
the base network was fine-tuned using a face dataset similar
to the target dataset. This approach enabled the acquisition
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of the most suitable feature representation for the images
in IFPLD. In some cases, fine-tuning the network using the
ArcFace Loss function led to superior network embedding
compared to the standard Cross entropy loss function. The
accuracy and f1-score metrics of the Siamese network for
Face Verification showed this. While the Siamese network
can be used for face recognition in N-way-1-shot learning
scenarios, the Prototypical network performance was signifi-
cantly better with the same base network model. It achieved a
maximum 17% accuracy improvement over Siamese network
in the same testing scenario. The transformation of 1-shot-
learning to k-shot-learning, where k-1 additional data were
generated from data augmentation processes, was crucial
for achieving a high-performance Prototypical network. It
was observed that the Prototypical network achieved opti-
mal performance at k=3 or with the addition of two data
augmentations.
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