
Complexity Analysis of Encoding in CKKS-Fully
Homomorphic Encryption Algorithm

Infall Syafalni∗†, Daniel M. Reynaldi∗, Rinaldi Munir∗, Trio Adiono∗†, Nana Sutisna∗†, and Rahmat Mulyawan∗†
∗School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia

†University Center of Excellence on Microelectronics, Bandung Institute of Technology, Indonesia

Abstract—In this paper, we analyze the complexity of encoding
in CKKS algorithm. The encoding process in CKKS requires
some steps such as Inversion of PI π−1, Scaling, Discretization,
and Inverse of Sigma σ−1, and Rounding. However, the decoding
requires Sigma function to convert the encoded message back
to the plaintext. In this paper, we evaluate each function and
determine the complexities. Experimental results show that the
complexity of the encoding is O(n3) and the complexity of
the decoding is O(n2). The work is useful for optimization
and speeding up the CKKS computation on custom computing
platforms such as GPUs and FPGAs.

I. INTRODUCTION

Recently, the information technology has been rapidly de-
veloped by the advancement of high speed computing and
communication. However, vast amounts of data sent to the
cloud make opportunities for hackers to steal the data. For
example, in banking alone, billion transactions occur in a
day requiring robust global security to ensure the transactions
secured, fast and accurate. Moreover, with fast development of
social media, privacy concerns related to personal data such as
location, health, financial are urgently necessary.

In the other hand, a new technology called fully homomor-
phic encryption (FHE) allows us to compute the encrypted data
without decrypting it. FHE keeps the integrity of the data even
in the cloud. FHE was proposed firstly in 2009 [1]. After that,
some schemes such as Brakerski/Fan-Vercauteren (BFV) [2],
Brakerski-Gentry-Vaikuntanathan (BGV) [3], (Torus Fully Ho-
momorphic Encryption) TFHE [4] as well as Cheon-Kim-Kim-
Song (CKKS) [5] are proposed. However, the computation of
the FHE is heavy, thus it requires accelerator to be implemented
e.g., in [6].

In this paper, we analyze the complexity of encoding in
CKKS algorithm. The encoding process in CKKS requires
some steps such as Inversion of PI π−1, Scaling, Discretization,
and Inverse of Sigma σ−1, and Rounding. However, the decod-
ing requires Sigma function to convert the encoded message
back to the plaintext. In this paper, we evaluate each function
and determine the complexities. Experimental results show that
the complexity of the encoding is O(n3) and the complexity
of the decoding is O(n2). The work is useful for optimization
and speeding up the CKKS computation on custom computing
platforms such as GPUs and FPGAs.

This paper organization consists of 5 sections: Section I
explains the background of the work. Section II explains the
definitions and basic properties for math in FHE and CKKS.
Section III shows the proposed encoding complexity analysis
in CKKS. Section IV shows the experimental results. Finally,
Section V summarizes the work.

II. BASIC DEFINITIONS AND PROPERTIES

A. Mathematical Representation of FHE

Definition 2.1. Root of unity [7] is a complex number z iff zn

is 1 + 0j. Note that the imaginary value is 0. In euler form, z
is e

2πik
n or cos 2πk

n + i sin 2πk
n .

Definition 2.2. Cyclotomic polynomial [8] is a polynomial that
is formed from the primitive roots of unity so that the n-th
cyclotomic polynomial is able to be divided by x − 1 and is
unable to be divided by xk − 1 where k < n.

Ψn(x) =

n∏
1<k<n

x− e
2πik
n

Definition 2.3. Polynomial ring is a polynomial that is formed
from a sent of values. The variables from the polynomial is
isomorphism and has bijective set of values. Suppose that R is
a ring and x is a variable in the polynomial. Thus, we have a
polynomial ring:

R(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

Lemma 2.1. Cyclotomic polynomial ring is derived from
Definitions 2.2 and 2.3. It is the subset of cyclotomic polynomial
that has isomorphism in the roots. Let Z(x) be a polynomial
ring and xn + 1 is the cylotomic polynomial. Thus, we form a
cyclotomic polynomial ring by the polynomial ring in the finite
field such that:

R =
Z(x)

xn + 1

Definition 2.4. Lattice a set of points in n dimension of
Euclidean. Lattice-based cryptography is a conversion of a
message to a set of lattice values with uniform basis.

Lemma 2.2. Learning with errors (LWE) is a computational
problem for producing a ciphertext using a secret key s ∈ Zn =
q. The secret key is then used to generate the public key:

a, b = (s, a) + e mod q,979-8-3503-9660-7/22/$31.00 ©2022 IEEE

20
22

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
El

ec
tro

ni
cs

 a
nd

 S
m

ar
t D

ev
ic

es
 (I

SE
SD

) |
 9

79
-8

-3
50

3-
96

60
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
ES

D
56

10
3.

20
22

.9
98

06
95

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on May 09,2023 at 04:27:06 UTC from IEEE Xplore. Restrictions apply.

where (a, b) ∈ Zn
q × Zq , and e is the error with uniform

random value. The LWE is derived from closest vector problem
in lattice.

Lemma 2.3. Ring learning with errors (RLWE) is LWE with
cyclotomic polynomial ring in Lemma 2.1:

Rq =
Zq(x)

xn + 1
,

such that the values of a and b in the ring of Rq . Thus, RLWE
is a, b = (s, a)+e mod q where s ∈ Rq and (a, b) ∈ Rq×Rq ,
and e is error with Gaussian uniform.

B. CKKS-FHE

This section explains the basic properties of CKKS algorithm
[5].

Definition 2.5. By Lemma 2.2, the secret key generation of
CKKS is sk = s. Moreover, the public key is represented by:

pk = (a, b),

b = −a · s+ e,

where (a, b) ∈ Rq×Rq , and e is error with Gaussian uniform.
Note that sk ∈ Rq is a cyclotomic polynomial ring and pk ∈ R2

q

is a cyclotomic polynomial ring with 2 dimensions.

Definition 2.6. Encoding in CKKS (Ecd) is a map of a complex
number of the message z to m such that:

Ecd : z → m(X),

where X is the polynomial variable, m(X) ∈ Z[X]/(XN +1),
and z ∈ CN/2. Note that C is complex domain with dimension
N/2.

Lemma 2.4. Inversion of π (π−1) is a conversion of a complex
number z into a matrix H:

π−1 : z → H,

where H = z ∈ CN . Note that the vector elements of H is the
combination of zj and the conjugate of z∗j .

Definition 2.7. Scale ∆ is a constant, usually in the form of
2m, that scales the z. In this case, the matrix H is also scaled
by ∆, thus we have ∆ ·H .

Lemma 2.5. Sigma inverse (σ−1) is required in Encoding. The
inputs of sigma inverse is bi that is calculated by the following:

bi = σ(Xi−1),

= ((ζiM)i−1, . . . , (ζN−1
M)i−1),

where ζ is the results of sigma inverse. Furthermore, discretiza-
tion is represented by:

zi =
(z · bi)
||bi||2

,

where z ∈ CN . Finally, zi is rounded to the closest integer
such that ⌊zi⌉.

z

PI Inverse

Discretization

Sigma Inverse

µ

Scaling µ

Scaling

Sigma

z

Encoding

Decoding

z

PI Inverse

Discretization

Sigma Inverse

µ

Scaling µ

Scaling

Sigma

z

Encoding

Decoding

Fig. 1: Overview of encoding and decoding processes in CKKS

Lemma 2.6. Encryption of CKKS uses encoding µ =
Ecd(∆, z) and pk ∈ R2

q as a public key and s ∈ Rq as a
secret key. The ciphertext c is calculated by the following:

c = (c0, c1), c0 = µ− a · s+ e, and c1 = a,

where c ∈ R2
q is in the form of cyclotomic polynomial ring.

Lemma 2.7. Decryption of CKKS is calculated by the follow-
ing:

µ′ = c0 + c1 · s,
= µ− a · s+ e+ a · s,
= µ+ e,

≈ µ,

where µ is the decrypted message, c0 and c1 are the ciphertexts,
and s is the secret key. Note that the value of e is less than q.

III. COMPLEXITY OF ENCODING IN CKKS

In this section, we observe the complexity of Encoding and
Decoding processes in CKKS. The Encoding consists of inver-
sion of π, scaling, discretization, and inverse of σ. Meanwhile,
the Decoding consists of unscaling and multiplication of σ. Fig.
1 shows the overview of Encoding and Decoding processes in
CKKS that will be analyzed in this work.

A. Encoding Analysis

Vandermode matrix is used to find the root of unity.

Lemma 3.1. Suppose that we have a root:

xk = e2πik/M ,

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on May 09,2023 at 04:27:06 UTC from IEEE Xplore. Restrictions apply.

where M is the half of polynomial degree N , i is the imaginary
unit, and k is the index with 1 < k < N/2 and k is odd. Note
that e is the base of logarithm number.

The generation of Vandermode matrix for root of unity is
represented as follows:

V =

1 x1 x2

1 · · · xM−1
1

1 x3 x2
3 · · · xM−1

3
...

...
...

...
...

1 xM−1 x2
M−1 · · · xM−1

M−1

 ,

where xk is the root of unity with k is odd and 1 < k < N .

Lemma 3.2. The complexity of Vandermode matrix for root of
unity is O(n2).

Proof. From Alg. 1, to generate the root of unity xk = e2πik/M ,
it requires M ×M loops. Thus, we have the lemma.

Algorithm 1: Vandermonde Matrix

Input: Polynomial degree N and x0 = e2πi/M .
Output: Vandermode matrix V .
begin

V ← [v0,0, v0,1, . . . , vM−1,M−1]
for j = 0 to M − 1 do

for k = 0 to M − 1 do
v[j, k]← x[0](2j+1)k

Next, in Encoding as explained in Lemma 2.4, the inversion
of π is required. By Alg. 2, we convert each element of z into
it’s conjugate.

Algorithm 2: π inverse
Input: Complex number z.
Output: Complex number with conjugate z∗.
begin

for j = 0 to M − 1 do
z∗[j]← (z[j])∗

Lemma 3.3. The complexity of π inverse in Alg. 2 is O(n).

Proof. It is clear from Alg. 2 that runs in a loop.

Algorithm 3: Discretization
Input: Scaled polynomial zs with scale ∆.

Vandermonde matrix root of unity V
Output: Sigma inverse of ζ, σ−1(ζ).
begin

for j = 0 to M − 1 do
zs[j]← zs[j]·b[j]

||b[j]2||

zs ← ⌊zs⌉ zr ← V T · zs

The next process required for the encoding is discretization.
The mathematical representation of discretization is in Lemma
2.5. The process includes coordinate computing and a matrix
multiplication between the coordinates and the transposed Van-
dermode matrix.

Lemma 3.4. The dicretization process in Alg. 3 has O(n2 +
n) ≈ O(n2) complexity.

Proof. From Alg. 3, we have a computation for coordinates for
a loop. Furthermore, the output of the coordinates is multiplied
by transposed Vandermode matrix root of unity with O(n2).

Algorithm 4: Sigma inverse σ−1

Input: Polynomial ζ. Vandermonde matrix root of unity
V

Output: Sigma inverse of ζ, σ−1(ζ).
begin

P ← linear.algebra.solver(ζ, V)
Pr ← ⌊P ⌉

The final process in encoding is the inversion of σ or σ−1.
The σ−1 is the most complex function in the encoding since
it requires linear algebra solver between M × 1 matrix (ζ) and
M ×M matrix (V).

Lemma 3.5. The inversion of σ or σ−1 requires at most O(n3)
time complexity.

Proof. By Lemma 2.5, sigma inverse is required to find bj . To
make it clearer, suppose that we have the following matrices
operation:

[V][B] = [Z],

where [V] is the Vandermonde matrix and [Z] is the polynomial
input ζ. To get the value of [B], we use the sigma inverse such
that:

[B] = [V]−1[Z].

Note that the [V]−1 is the σ−1 function. This inversion of the
matrix in linear algebra solver requires at most O(n3). Thus,
we have the lemma.

Algorithm 5: Encode
Input: Input polynomial z and scale ∆.
Output: Encoded z (µ).
begin

zpi ← π−1(z)
zs ← zpi ·∆
zr ← discretization(zs)
µ← σ−1(zr)

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on May 09,2023 at 04:27:06 UTC from IEEE Xplore. Restrictions apply.

Theorem 3.1. The encoding consists of π−1, scaling, dis-
cretization and σ−1. Thus, the overall complexity is

O(n+ n2 + n3) ≈ O(n3).

Proof. As Alg. 5, the complexities of π−1 is O(n), scaling is
O(n), discretization is O(n2), and σ−1 is O(n3). Thus, we
have the theorem.

B. Decoding Analysis

The last function is sigma σ that is used for decoding process.
Note that the σ uses [V] to convert back the message [Z] that
is explained in the proof of Lemma 3.5.

Algorithm 6: Sigma σ

Input: Polynomial C and it’s degree M . Vandermonde
matrix root of unity V .

Output: Sigma of C, S = σ(C).
begin

C ← [c0, . . . , cM−1]
S ← [s0,0, . . . , sM−1,M−1]
for j = 0 to M − 1 do

for k = 0 to M − 1 do
s[j, k]← c[j] · v[j, k]

Lemma 3.6. As Alg. 5, the complexity of σ is O(n2).

Proof. It is clear that σ process uses dot multiplication of a
matrix. Thus, it costs O(n2).

Algorithm 7: Decode
Input: Input encoded polynomial µ and scale ∆.
Output: Decoded µ (z).
begin

zpi ← µ · 1/∆
z ← σ(zpi)

Theorem 3.2. The decoding consists of division of scaling and
multiplication with sigma σ. Thus, the overall complexity is
O(n+ n2) ≈ O(n2).

Proof. It is clear from Alg. 7.

IV. EXPERIMENTAL RESULTS

In the experiment, we implement all the encoding and the
decoding functions in Python. Next, we compute the functions
in Google Collaboration with Dual CPUs of AMD EPYC 7B12
with 2.249 GHz and 13 GB Memory.

Figs. 2 and 3 shows our implementations of encoding and
decoding. Next, we run the functions for N = 2D=2 = 4 to
N = 2D=10 = 1024. Figs. 4 and 5 (in Logarithmic) show
the time execution performances. As shown, σ−1 is the most
complex with O(n3) while σ is only O(n2).

1 def encode(self, z):
2 z_pi = self.pi_inverse(z)
3 scaled_z = self.scale * z_pi
4 rounded_z = self.discretization(scaled_z)
5 polynomial = self.sigma_inverse(rounded_z)
6 return p

Fig. 2: Encoding implementation

1 def decode(self, p):
2 unscaled_p = np.multiply(np.array(p.coef), (1/

self.scale))
3 z = self.sigma(unscaled_p)
4 return z

Fig. 3: Decoding implementation

2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

D(N = 2D)

Ti
m

e
(m

s)

Dec.
Enc.
σ

Discret.
π Inv.
σ Inv.

Vander.

Fig. 4: Various functions execution time

2 3 4 5 6 7 8 9 10

10−4

10−3

10−2

10−1

100

101

102

D(N = 2D)

Ti
m

e
(m

s)

Dec. Enc.
σ Discret.

π Inv. σ Inv.
Vander.

Fig. 5: Various functions execution time (in logarithmic)

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on May 09,2023 at 04:27:06 UTC from IEEE Xplore. Restrictions apply.

4 8 16

0

5

10

15

20

25

M(∆ = 2M)

E
rr

or
|z
−

µ
|

D = 2 D = 3 D = 4
D = 5 D = 6 D = 7
D = 8 D = 9 D = 10

Fig. 6: Encoding-decoding error for D = 2 to D = 10

The sum of time complexities of π−1, σ−1, and discretization
form the time complexity of Encoding (red line with square
mark) in Figs. 4 and 5 (in Logarithmic). However, time com-
plexity of sigma represents most of the time complexity of
Decoding.

Finally, we observe the error performance of encoding-
decoding in CKKS as shown in Fig. 6 with various D. Note
that N = 2D, where N is the polynomial degree. We take the
values of M = [4, 8, 16] that indicate the number of bit of ∆.
In this case, we have ∆ is 16, 256 and 1024 for M = [4, 8, 16],
respectively. As shown in Fig. 6, the increment of degrees of
N = 2D increases the errors. However, by adding some bits at
∆, the errors can be reduced.

V. CONCLUSIONS

In this paper, we analyzed the complexity of encoding in
CKKS algorithm. The encoding process in CKKS requires
some steps such as Inversion of PI π−1, Scaling, Discretiza-
tion, and Inverse of Sigma σ−1, and Rounding. However,
the decoding requires Sigma function to convert the encoded
message back to the plaintext. In this paper, we evaluate each
function and determine the complexities. Experimental results
showed that the complexity of the encoding is O(n3) and
the complexity of the decoding is O(n2). The work is useful
for optimization and speeding up the CKKS computation on
custom computing platforms such as GPUs and FPGAs.

The future works include the implementation of paral-
lel programming of CKKS encoding-decoding together with

transformations optimization for the polynomial operations in
the CKKS. Furthermore, the optimization of bootstrapping in
CKKS is also required to speed up the time execution. Thus,
the CKKS algorithm can be practically implemented in the
industries.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Culture, Research, and Technology under National Competition
Research grant (Program Penelitian Kompetitif Nasional).

REFERENCES

[1] C. Gentry, ”Fully homomorphic encryption using ideal lattices,” in Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing,
pp. 169–178, 2009.

[2] J. Fan and F. Vercauteren, ”Somewhat practical fully homomorphic encryp-
tion,” IACR Cryptology ePrint Archhieve, vol. 2012/144, pp. 1-19, 2012.

[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ”(Leveled) fully homo-
morphic encryption without bootstrapping,” ACM Transactions on Com-
putation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014

[4] I. Chillotti, N. Gama, M. Georgieva, et al., ”TFHE: Fast fully homomorphic
encryption over the torus,” J Cryptol, vol. 33, pp. 34–91, 2020.

[5] J.H. Cheon, A. Kim, M. Kim, Y. Song, ”Homomorphic encryption for
arithmetic of approximate numbers,” In: Takagi, T., Peyrin, T. (eds)
Advances in Cryptology – ASIACRYPT 2017, Lecture Notes in Computer
Science, vol. 10624, 2017.

[6] I. Syafalni, G. Jonatan, N. Sutisna, R. Mulyawan and T. Adiono, ”Efficient
homomorphic encryption accelerator With integrated PRNG using low-cost
FPGA,” in IEEE Access, vol. 10, pp. 7753-7771, 2022.

[7] A. Lang. Algebra. Springer Science and Business Media. 2005.
[8] A. V. Saavedra. Study and Applications of Homomorphic Encryption

Algorithms to Privay Preserving SVM Inference for a Bak Fraud Detection
Context. Máster Inter-Universitario en Ciberseguridade: Universidade de
Vigo. 2021.

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on May 09,2023 at 04:27:06 UTC from IEEE Xplore. Restrictions apply.

