
Application of The Modified EzStego Algorithm for
Hiding Secret Messages in The Animated GIF Images

Rinaldi Munir
Informatics Research Group, School of Electrical Engineering and Informatics, Institut Teknologi Bandung

Bandung, Indonesia
E-mail: rinaldi@informatika.org

Abstract—Animated GIF images consist of a number of frames
that displayed in succession as a video. Capacity of hiding
messages (or payload) in an animated GIF file is much greater
than in a single GIF image. A modified EzStego steganography
algorithm has been proposed for GIF images. The modified
EzStego is a improved version of the original EzStego so that bits
of the message can be embedded randomly in the image. The
modified EzStego is based on chaos theory. In this paper we
applied the modified EzStego algorithm for hiding the secret
messages in the animated GIF images. Bits of the message are
embedded randomly in each frame. Frames also can be selected
randomly for increasing security. In order to more secure, the
message is encrypted before embedding. The bits of the message
is encrypted with random bit which is generated by a chaos map.
Based on experiments, the modified EzStego algorithm can be
applied to the animated GIF images with the minimal visual
distortions .

Keywords—Modified EzStego, animated GIF images, frame,
random, chaos.

I. INTRODUCTION

Steganography is one of the techniques in information
security. Aim of steganography is for hiding message in the
communication by embedding the secret message in a cover
media so that the presence of the message can’t be known from
the third party. The cover media can be anything, but the cover
usually are the images. Hiding the message in the images
exploits the weakness of the human visual that can not detect
small changes in the images.

A popular method for image steganography is the least
significant bit (LSB) embedding. In this method, LSBs of pixel
values of the cover image are replaced by bits of the message.
Majority of based-LSB algorithms use images in bitmap
(BMP) format. The BMP format is rarely used in World Wide
Web because of their large size (The BMP files are not be
compressed). The another popular image formats are JPEG,
PNG, GIF, etc.

In this paper we focused on GIF images. GIF (Graphics
Interchange Format) was introduced by Compuserve in 1987
and come into widespread usage on the World Wide Web
because of its wide support and portablility [1]. GIF image is a
kind of the indexed image. It uses a palette of up to 256 colors
from the 24-bit RGB color space with values in the range [0,1].
The pixel values represent index to a palette row. Color of the

pixel is combination of each channel red (R), green (G), and
blue (B) in the palette row. Fig. 1 shows the structure of an GIF
image. In the figure, the pixel value 5 represents the fifth row
of the palette. In the row, R = 0.2902, G = 0.0627, B = 0.0627.
Thus, the color perception of the pixel 5 is combination of the
color component.

Fig. 1 GIF image structure (Source: Matlab)

GIF format supports animaton and we call it the animated
GIF images. The animated GIF images comprises a number of
frames. Each frame was displayed in succession as a video.
The animated GIF images is usually used for displaying
cartoon, funny images, or other interesting images.

A popular steganography algorithm for GIF images is
EzStego. EzStego algorithm has been proposed by Machado
[2]. It embed bits of the message to LSBs of indices pointing
to the palette. In order to minimize color degradation due to
changes in the indices, at first the palette is sorted so that the
difference between two adjacent color is minimized. EzStego
embeds message into the LSBs of indices pointing to the sorted
palette. Besides of EzStego, there is another steganographic
algorithm for GIF images, i.e. S-Tool and Gifshuffle. S-Tool
was developed by Andy Brown. S-Tool encrypt the message
before embedding with various encryption algorithm such as
DES and IDEA [3]. Gifshuffle is developed by Matthew Kwan.
It works with all GIF images, including those with
transparency and animation, by shuffling the palette. In
addition it provides compression and encryption of the
concealed message [4].

Back to EzStego. Unfortunately, the original EzStego
didn’t use the key in embedding process, so anyone who know
that the stego-image is made using EzStego can extract the

2016 2nd International Conference on Science in Information Technology (ICSITech)

58978-1-5090-1721-8/16/$31.00 ©2016 IEEE

message. The modified version of EzStego has been proposed
so that both embedding and extaction process need the same
key [5]. In the modified EzStego, the pixels for message
embedding are chosen randomly by a random permutation that
seeded with a secret key. To make the embedding more secure,
the secret message is encrypted before it is inserted in the
image. The secret message is encrypted by XOR-ing it with
random bits that is generated from a chaos system.

When we hide a message in an animated GIF image, we
will get more capacity (or payload) to embed, because there are
more frames than only a frame in a single GIF image. We
needn’t develop a new steganography algorithm for the
animated GIF images. We can improve the modified EzStego
so that it can be used for embedding the message in the
animated GIF images.

This paper will present application of the modified EzStego
for animated GIF images. The paper is organized into five
sections. The first section is introduction. The second section
will review some study of literatures such as animated GIF
images, chaos system, and the modified EzStego algorithm. In
the third section, we explain a scheme of application of the
modified EzStego for the animated GIF images. The fourth
section describe the experiments and discuss the results.
Finally, in last section we give conclusion and suggest future
works.

II. LITERATURE STUDY

A. Animated GIF Images

The animated GIF images consist of a number of frames,
each frame may has independent palette itself. Fig. 2 shows six
frames of an animated GIF image (jogging.gif).

(1)

(2)

 (3)

(4)

(5)

 (6)

Fig. 2. Six frames of an animated GIF image, jogging.gif

B. Chaos System

Chaos system have a characteristics of sensitivity to initial
values. It means that a very small changes to the initial values
will produce the chaos values that differ significantly. This
characteristics is required to information security.

A simplest chaos system is a Logistic Map, described by a
iteration equation,

 xk+1 = μxk (1− xk) (1)

The initial values is μ, where 0 < μ ≤ 4, and x0 for starting the
iteration. The map is in chaotic state when 3.57 < μ ≤ 4, and in
this chaotic the behavior of systems appears to be random [7].
Thus, a logistic map can be used as as a pseudo-random
generator. The initial values of Logistic Map, x0 and constant
μ, behave as the secret keys. If we change x0 slightly becomes
x0 + Δ, the chaos values generated, after iterated several times
are significantly different from the previous chaos values with
initial value x0.

C. Modified EzStego Algoritm

The original EzStego is a sequential embedding type of
stego system. It means that bits of the message are embedded
sequentially in the LSBs of the pixels values. No key required
for embedding and extraction the message [5]. The modified
EzStego has been proposed where the message bits are
embedded in random order of pixels [6]. A random
permutation for the random positions of embedding is
generated by a secret key. For increasing security, before
embedding, we encrypt the message with the random bits that
generated by a logistic map. The algorithm of embedding and
extraction is described follows.

We can resume the steps of embedding message in the
modified EzStego as follow:

Embedding Algorithm

1. In order to minimize the distortion, the palette is first sorted
by intensity values so that the difference between two
adjacent colors is minimized. The palette of the original
image is sorted by distance between color of the pixels.
The distance between the color (R1, G1, B1) dan (R2, G2, B2)
is calculated by Euclidean distance:

 2
21

2
21

2
21)()()(BBGGRRd −+−+−= (2)

2. Assign the new index of the sorted palette by numbering 0,
1, 2, … etc.

3. Encrypt the message bits by XOR-ing them with the
random bits that generated by a Logistic Map with initial
values x0 and constant μ.

4. Generate a random permutation with initial key y that
represent the random position of embedding.

5. Based on the random position, replace the LSB of indexs
of the sorted palllete by bits of the encrypted message, C.
Finally we get a stego-image.

2016 2nd International Conference on Science in Information Technology (ICSITech)

59

Extraction Algorithm
1. Sort the palette of the stego-image by distance between

color of the pixels.

2. Assign the new index of the sorted palette by numbering 0,
1, 2, … etc.

3. Generate a random permutation with initial key y that
represent the random position of embedding.

4. Extract the LSB of the index of the sorted palette. We will
get the encrypted message.

5. Generate the random bits by iterating the Logistic Map
with initial values x0 and constant μ.

6. Decrypt the encrypted message by XOR-ing C the
encrypted messagewith the random bits.

III. THE PROPOSED SCHEME

The modified EzStego algorithm can be improved so that it
can be used for embedding the message in the animated GIF
images. In the proposed sheme, the frame can be selected
randomly, and for each selected frame, bits of the message are
embedded randomly in the pixels of the frame. The messages
will be embedded to the images can be anything: text, image,
music, video, etc. Fig. 3 shows the embedding scheme and the
extraction scheme.

In the embedding scheme, frames are extracted from an
animated GIF image. Next, the frames for embedding are
selected randomly. Finally, run the modified EzStego with
input are message and the secret keys to result a stego animated
GIF image.

In the extraction scheme, the scheme is similar, except the
inputs are an animated stego GIF image and the secret keys,
and the output is the original message.

(a) The embedding scheme

(b) The extraction scheme

Fig. 3. Embedding and extraction scheme of the modified EzStego
for the animated GIF image

IV. EXPERIMENT RESULTS AND DISCUSSION

Some experiments have been done to ensure the proposed
schemes are correct and quality of the stego animated GIF
images was measured by PSNR. We use two animated GIF
images as the cover images, one is a animated cartoon image
(SnowWhite.gif), and another one is animated natural image
(CuteKitten.gif) (see Fig. 4). The SnowWhite.gif image consist
of 32 frames, each frame has size 225 × 300 pixel. The
CuteKitten.gif image consist of 9 frames, each frame has size
274 × 500 pixel.

Fig. 4. The cover images. Top: SnowWhite.gif;

Bottom: CuteKitten.gif

The message embedded to the cover images is a text file

story.txt which size is 35,546 bytes or 284,368 bits (a
beginning part of the the text file is shown in Fig.5). Each
frame in SnowWhite.gif image can be embedded 225 × 300 =
67,500 bits. Thus, to embed 142048 bits of message it needs
284,368 /67,500 = 5 frames. Next, each frame in
CuteKitten.gif image can be embedded 274 × 500 = 137000
bits. It needs 284,368 /137,000 = 3 frames for embedding
all of bits.

2016 2nd International Conference on Science in Information Technology (ICSITech)

60

Fig. 5. The beginning part of the message (story.txt)

The initial values for the Logistic Map for generating

random bits in these experiments is x0 = 0.1234, μ = 3.9762,
and a seed for the random permutation for location of
embedding is y = 0.5678. All of them behave the secret keys in
the stego-system.

Quality of the stego-image is measured by PSNR. PSNR
(in dB) is calculated by

×=

rms
PSNR

255
log20 10 (3)

where rms is abbreviation of root mean square of two images, I

and Î , of size M × N pixels, that has a formula:

= =

−=
N

i

M

j
ijij II

MN
rms

1 1

2)ˆ(
1

 (4)

Before calculating PSNR, the GIF images have to be

transformed from indexed images to RGB images. The higher
PSNR represent a fine quality after embedding, the lower
PSNR represent a big degradation after embedding. For the
convenience, the quality of an image is still can be tolerance if
PSNR > 30.

Table. I and Table II respectively show the frames of the
stego animated GIF images of SnowWhite.gif and CuteKitte.gif
that was embedded bits of messages. PSNRs of each frame are
displayed in right side. We can see that visually the stego
frames is very similar with their cover frames. The stego
animated GIF images can be displayed in webpage perfectly as
fine as the cover images. Nobody knows that the animated GIF
images contain the hidden message inside.

In the extraction process, the hidden messages could be
extracted back from the stego animate FIF images exactly. The
original messages were same exactly with the extacted
messages, both size and content. It means the proposed scheme
worked very well.

TABLE I. RESULTS OF EXPERIMENT (SNOWWHITE.GIF)

Frame Cover Image Stego Image PSNR

8

79.2926
dB

13
72.7790
dB

16

72.8334
dB

19

72.6843
dB

20

72.4812
dB

TABLE II. RESULTS OF EXPERIMENT (CUTEKITTEN.GIF)

Frame Cover Image Stego Image PSNR

3

74.3899
dB

6

85.2463
dB

9

74.2097
dB

Based on results of the experiments we found that the
proposed scheme worked very well. The stego animated GIF
images were similar with the cover animated GIF images. We
also got that PSNR of every stego-frames were very high (all
are > 70 dB). The results represented that the embedding of
messages didn’t affect quality of the images significantly. The
stego animated GIF images can be displayed as well as the
original animated GIF images.

Bits of the message can be inserted in random frames of the
animated GIF images successfully. The message can be
recovered exactly from the stego images.

2016 2nd International Conference on Science in Information Technology (ICSITech)

61

Compared with results of the previous work [6], the
payload (size of data embedded) in an animated GIF image is
more larger than the payload in a single GIF image. Therefore,
the proposed scheme is better than the previous scheme for
embedding more messages in an animated GIF image.

V. CONCLUSION

In this paper we have presented application of the modified
EzStego algorithm for hiding message in the animated GIF
images. Quality of the stego-images are very fine and no
degradation significantly. The message was embedded in
random frames and in random pixels in each frame.

REFERENCES
[1] Navin, A. H, Sadighi, A., Fesharaki, M. N., Teshnelab, M., Keshmi, R.,

Data Oriented Model of Image: as a Framework for Image Processing,
World Academy of Science, Engineering and Technology 34, 2007

[2] R. Machado, EZStego, http://www.stego.com

[3] N.F. Johnson and S. Jajodia, ‘Exploring Steganography: Seeing the
Unseen, George Mason University’, IEEE Computers, 1998.

[4] The Gifshuffle homepage, http://www.darkside.com.au/gifshuffle/

[5] A. Westfeld and A. Pfitzmann (1999). “Attack on Steganographic
System”, Lecture Notes in Computer Sciences, vol. 1768, pp. 61-76.

[6] Munir, R., Chaos-based Modified “EzStego” Algorithm for Improving
Security of Message Hiding in GIF Image, Proceeding of Proceeding of
"2015 International Conference on Computer, Control, Informatics and
Its Applications" (IC3INA 2015), LIPI Bandung, 5-7 Oktober 2015.

[7] Dawei, Z., Guanrong, C., Wenbo, L., A Chaos-Based Robust
Wavelet-Dmain Watermarking Algorithm, Chaos Solitons
and Fractals 22 (2004) page 47-54.

2016 2nd International Conference on Science in Information Technology (ICSITech)

62

