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Abstract— In this paper, the weaving effects in metamorphic 

animation of tree-like fractals are presented. The metamorphic 

animation technique is very fascinating, especially when the 

animation is involving objects in nature that can be represented 

by fractals. Through the inverse problem process, objects in 

nature can be encoded into IFS fractals form by means of the 

collage theorem and affine function as IFS code. Swing direction 

from left to right or vice versa or weaving effect in metamorphic 

animation of tree-like fractal can be simulated based on a family 

of multi-transitional IFS code naturally between the start and 

target objects by means of IFS randomize algorithm, so can be 

observed gradually and smoothly. 
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I.  INTRODUCTION 

The metamorphic technology is one of the most important 
technologies in the computer animation. Therefore, the 
objective of this study is to design a fractal-based algorithm 
and produce a metamorphic animation based on a fractal idea. 
Recent studies show that the fractal idea can be effectively 
applied in the metamorphic animation that can improve the 
efficiency of animation production by fractal algorithm version 
and simultaneously greatly reduce the cost that the 
conventional algorithm version cannot [5,12,13]. One of the 
contribution of this study is to show a method of metamorphic 
animation that can produce weaving effects with gradual and 
smooth visualization.  

In this paper, there are five sections. The first and the last 
sections are introduction and conclusion. In between both 
sections there are other three sections, those are related works, 
method and simulation. In this introductory section, the 
discussion begin with the basic terminology such as fractal and 
fractal geometry, contractive affine transformation, iterated 
function system code, and generator algorithm of iterated 
function system fractal in conjunction with the metamorphic 
animation in fractal form. 

A. Fractal and Fractal Geometry 

The term of fractal is first introduced by Mandelbrot, 

picked from a Latin word: fractus, which has a meaning: 

broken or fractured [1]. One way to generate a fractal object is 

by L or Lindenmayer systems which is first introduced by 

Lindenmayer and is suitable for generating the plant-like 

objects [2]. Another way to generate a fractal is by the iterated 

function system (IFS) which will be used in metamorphic 

animation of tree-like fractal in this paper. Barnsley based on 

Hutchinson‟s idea as mathematical background introduced IFS 

for the first time [3, 4]. Since his research, many researchers 

are following him. In euclidean geometry the range of 

dimension is in discrete integer number, but in fractal 

geometry as a superset of the euclidean geometry, the range of 

dimension can be in fractional numbers continuously. 

 

B. Contractive Affine Transformation 

The term of contractive affine transformation (CAT) 

function is special case of affine transformation function for 

generating fractal objects which have a self-similarity 

property, so is called also as self-affine function. The self-

similarity as a property of a fractal object means that parts of 

an object can represent an object as a whole in smaller scale 

with the different position and orientation. The CAT function 

in 2D fractal maps the next position of points (x’, y’) as a 

vector in an object that depend on the previous ones (x, y) by a 

2 rows and 2 columns matrix which has four coefficients: a, b, 

c and d and a vector (2 rows and 1 column) which has two 

coefficients: e and f, so totally there are six coefficients as 

described in equation (1) below. The coefficients in the matrix 

represent the form and the orientation of object around the 

centroid and the coefficients in the vector represent the scale 

and the position relatively from the centroid. 
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C. Iterated Function System Code 

Fractal objects in IFS form is represented by IFS code set, 

which is actually a collection of CAT coefficients. Typically a 

2D object in IFS fractal form can be encoded as one or more 

collections of six coefficients: a, b, c, d, e and f. One IFS code 

set represents one part of a fractal object that has similarity to 

the object as a whole as already mentioned in the previous 

section above. The coefficient-a, b, c and d represent and 

determine the shape of the fractal object in x and y directions, 



and the the other two coefficients, e and f represent and 

determine the position and scale of the object [4]. The typical 

IFS code (tree-like fractal in 6 CAT functions) as an example 

with probability values p is displayed in table-I below. The 

probability values represented by percentage numbers or the 

probability factors represented by fraction numbers between 

0.0 and 1.0 determine the population of pixels in part of object 

represented by each CAT function. 

TABLE I.  IFS CODE OF 6 CAT TREE-LIKE FRACTAL (A) 

a b c d e f p 

0.040 0.000 0.000 -0.440 0.000 0.390 8.0 

0.040 0.000 0.000 -0.440 0.000 0.590 8.0 

0.389 0.289 -0.389 0.345 0.000 0.220 21.0 

0.345 -0.257 0.289 0.306 0.000 0.240 21.0 
0.390 -0.275 0.225 0.476 0.000 0.440 21.0 
0.408 0.190 -0.190 0.408 0.000 0.480 21.0 

 

The first two rows of function represents the trunk, the second 

and third represent the middle branches (right and left) and the 

two last row represent the top branches (left and right). The 

correspondent figure of Table-I is displayed in Fig.1 (a and b) 

 

 
 

a b 

Fig. 1. (a) Collage theorem layout. (b) The correspondent fractal object 

D. Generator Algorithm of Iterated Function System Fractal  

In general there are two major fractal generator algorithms. 

The first is L systems generator algorithm and the second is 

IFS generator algorithm. The IFS generator algorithm itself is 

divided into two IFS generator algorithms. The first is 

randomize IFS generator algorithm and the second is 

deterministic IFS generator algorithm. The randomize IFS 

generator algorithm is also called the random iteration 

algorithm and the second algorithm is also called the 

deterministic iteration algorithm [2, 4, 6]. 
 

II. RELATED WORKS 

A. Animation and Fixed-Point Algorithm 

As the representation of recent researches in algorithm 

releated to the fractal construction, two papers are discussed 

here. First, Chen et al. have presented in their paper a new 

fractal-based algorithm for the metamorphic animation. The 

conceptual roots of fractals can be traced to the attempts to 

measure the size of objects for which traditional definitions 

based on Euclidean geometry or calculus failed [5]. In his 

research as the second representation paper, Chang has 

proposed a hierarchical fixed point-searching algorithm that 

can determine the coarse shape, the original coordinates, and 

their scales of 2-D fractal sets directly from its IFS code. Then 

the IFS codes are modified to generate the new 2-D fractal sets 

that can be the arbitrary affine transformation of original 

fractal sets. The transformations for 2-D fractal sets include 

translation, scaling, shearing, dilation /contraction, rotation, 

and reflection. The composition effects of the transformations 

above can also be accomplished through the matrix 

multiplication and represented by a single matrix and can be 

synthesized into a complicated image frame with elaborate 

design [9]. 

B. Iterated Function System Model 

Kocic et al. have presented the AIFS (Affine invariant 

Iterated Function System) that is a slightly modified IFS 

defined by Barnsley. Instead of the usual Descartes 

coordinates, the barycentric system has been used. This allows 

more handy manipulation with the attractors generated by the 

IFS [7]. Starting from the original definitions of iterated 

function systems (IFS) and iterated function systems with 

probabilities (IFSP) in their paper, Kunze et al. have 

introduced the notions of iterated multifunction systems (IMS) 

and iterated multi-function systems with probabilities (IMSP). 

They considered the IMS and IMSP as operators on the space 

H(H(X)), the space of (nonempty) compact subsets of the 

space H(X) of (nonempty) compact subsets of the complete 

metric base space or pixel space (X; d) on which the attractors 

are supported [10].  

C. Interpolation and Morphing 

As a representation paper in fractal interpolation subject, in 

their paper Zhang et al. have proposed the general formula and 

the inverse algorithm for the multi-dimensional piece-wise 

self-affine fractal interpolation model for the multi-

dimensional piece-wise hidden-variable fractal model [8]. As 

the other representation paper in fractal interpolation subject, 

in his thesis, Scealy has studied primarily on V-variable 

fractals, as recently developed by Barnsley, Hutchinson and 

Stenflo. He extended fractal interpolation functions to the 

random (and in particular, the V-variable) setting, and 

calculated the box-counting dimension of particular class of 

V-variable fractal interpolation functions. The extension of 

fractal interpolation functions to the V-variable setting yields a 

class of random fractal interpolation functions for which the 

box-counting dimensions may be approximated computation-

ally, and may be computed exactly for the {V, k}-variable 

subclass. [11]. As mentioned in previous sub-sections Chen 

at.al have proposed a new fractal-based algorithm for the 

metamorphic animation The proposed main method is to 

weight two IFS (Iterated Function System) codes between the 

start and the target object by an interpolation function. The 

experimental results demonstrate that the animation generated 

according to their method is smooth, natural and fluent [5]. In 

their paper, Zhuang et al. have proposed a new IFS 

corresponding method based on rotation matching and local 

coarse convex-hull, which ensures both that one IFS‟s local 



attractor morph to the most similar local attractor from the 

other IFS, and the fractal feature is preserved during morphing 

procedure. The coarse convex-hull and rotation matching is 

very easy to create. Furthermore, they can be used for 

controlling and manipulating 2D fractal shapes [12]. 

 

III. METHOD 

A. Multi-Transitional Iterated Function System 

Basically in transitional IFS code there are two things 

should be considered. The first one is the number of CAT 

function for both IFS code set of the start and target. It is easy 

to interpolate coefficient of IFS code in between the start and 

target, if the number of self-affine function in the start and 

target is the same. If it „s not then the dummy function should 

be inserted into one of IFS code set either the start or the 

target, so the number of CAT function in both sets becomes 

the same. The second one to be considered is the sequence of 

CAT function in the start and target should be also the same 

based on the part of object position represented relatively. If 

two things mentioned above are satisfied, then a pair of IFS 

code sets as the start and target is in a family of transitional 

IFS code. If there are more then one pair of IFS code sets as 

nodes of many transitions, then the collection pair of IFS code 

sets are in a family of multi-transitional IFS code [13]. 

 

B. Metamorphic Animation 

Metamorphic animation of tree-like fractal object can be 
accomplished if there are pairs collection of IFS code set in a 
family of multi-transitional IFS code by interpolating partially 
the corresponding CAT coefficients of each the start and target 
IFS code sets as a node, cyclically node by node. There are two 
types of partial interpolation IFS code. The first one is 
interpolating all coeffcients in each function of IFS code set, 
but is not for all functions of the IFS code set are interpolated. 
The second one is interpolating all CAT functions of the start 
to all CAT functions of target in the IFS code set, but is not for 
all coefficients in functions are interpolated.  

The pairs of IFS code sets for the first type of partial 
interpolation, that has two simulations are displayed in Table-II 
to Table-V for the first simulation and in Table-VI to Table-IX 
for the second simulation below and the pairs of IFS code sets 
for the second type of partial interpolation as the third 
simulation are displayed in Table-I (type-a) above as the first 
IFS code example in this paper and in Table-X (type-b) and 
Table-XI (type-c) below. To minimize the space, Table-III to 
Table-V, and Table-VII to Table-IX show only the three last 
CAT functions representing the only parts of object that may 
contributed in morphing animation (the other CAT functions 
are the same as in Table-II for the 9 CAT version, and in 
Table-VI for the 10 CAT version). 

 

 

 

TABLE II.  IFS CODE OF 9 CAT TREE-LIKE FRACTAL (A) 

a b C d e f p 

0.010 -0.022 0.001 -0.143 -0.006 0.080 3.0 
0.010 -0.024 0.001 0.168 0.000 0.000 3.0 
0.010 0.023 -0.001 0.159 -0.015 0.100 3.0 
0.009 0.160 -0.010 0.146 0.000 0.200 3.0 
0.008 -0.099 0.006 0.130 0.000 0.200 3.0 
0.002 -0.117 0.008 0.027 -0.060 0.280 3.0 
0.569 0.267 -0.315 0.481 0.100 0.290 28.0 
0.531 0.116 -0.142 0.435 -0.052 0.280 24.0 
0.420 -0.125 0.161 0.327 -0.130 0.300 20.0 

TABLE III.  IFS CODE OF 3 LAST OF 9 CAT TREE-LIKE FRACTAL (B) 

a b c d e f p 

0.607 0.197 -0.233 0.513 0.100 0.290 28.0 
0.531 0.116 -0.142 0.435 -0.052 0.280 24.0 
0.420 -0.125 0.161 0.327 -0.130 0.300 20.0 

TABLE IV.  IFS CODE OF 3 LAST OF 9 CAT TREE-LIKE FRACTAL (C) 

a b c d e f p 

0.607 0.197 -0.233 0.513 0.100 0.290 28.0 

0.548 0.039 -0.048 0.448 -0.052 0.280 24.0 

0.420 -0.125 0.161 0.327 -0.130 0.300 20.0 

TABLE V.  IFS CODE OF 3 LAST OF 9 CAT TREE-LIKE FRACTAL (D) 

a b c d e f p 

0.607 0.197 -0.233 0.513 0.100 0.290 28.0 

0.548 0.039 -0.048 0.448 -0.052 0.280 24.0 

0.377 -0.191 0.245 0.294 -0.130 0.300 20.0 

TABLE VI.  IFS CODE OF 10 CAT TREE-LIKE FRACTAL (A) 

a b c d e f p 

0.010 -0.022 0.001 0.168 0.000 0.000 2.0 

0.010 0.021 -0.001 0.159 -0.015 0.100 2.0 

0.009 0.146 -0.010 0.146 0.000 0.200 2.0 

0.008 -0.090 0.006 0.130 0.000 0.200 2.0 

0.008 0.015 -0.001 0.119 -0.060 0.280 2.0 

0.002 -0.117 0.008 0.027 -0.060 0.280 2.0 

0.007 -0.036 0.003 0.093 -0.138 0.290 2.0 

0.607 0.197 -0.233 0.513 0.100 0.290 40.0 

0.548 0.039 -0.048 0.448 -0.052 0.350 26.0 

0.377 -0.191 0.245 0.294 -0.160 0.350 20.0 

TABLE VII.  IFS CODE OF 3 LAST OF 10 CAT TREE-LIKE FRACTAL (B) 

a b c d e f p 

0.607 0.197 -0.233 0.513 0.100 0.290 40.0 

0.548 0.039 -0.048 0.448 -0.052 0.350 26.0 

0.420 -0.125 0.161 0.327 -0.160 0.350 20.0 

 

 

 



TABLE VIII.  IFS CODE OF 3 LAST OF 10 CAT TREE-LIKE FRACTAL (C) 

a b c d e f p 

0.607 0.197 -0.233 0.513 0.100 0.290 40.0 

0.531 0.116 -0.142 0.435 -0.052 0.350 26.0 

0.420 -0.125 0.161 0.327 -0.160 0.350 20.0 

TABLE IX.  IFS CODE OF 3 LAST OF 10 CAT TREE-LIKE FRACTAL (D) 

a b c d e f p 

0.569 0.267 -0.315 0.481 0.100 0.290 40.0 

0.531 0.116 -0.142 0.435 -0.052 0.350 26.0 

0.420 -0.125 0.161 0.327 -0.160 0.350 20.0 

TABLE X.  IFS CODE OF 6 CAT TREE-LIKE FRACTAL (B) 

a b c d e f p 

0.040 -0.046 -0.004 -0.438 0.040 0.390 8.0 

0.040 -0.088 -0.008 -0.441 0.100 0.590 8.0 

0.389 0.289 -0.389 0.345 0.020 0.220 21.0 

0.345 -0.257 0.289 0.306 0.020 0.240 21.0 
0.390 -0.275 0.225 0.476 0.090 0.440 21.0 
0.408 0.190 -0.190 0.408 0.090 0.480 21.0 

TABLE XI.  IFS CODE OF 6 CAT TREE-LIKE FRACTAL (C) 

a b c d e f p 

0.040 0.046 0.004 -0.438 -0.040 0.390 8.0 

0.040 0.088 0.008 -0.441 -0.090 0.590 8.0 

0.389 0.289 -0.389 0.345 -0.020 0.220 21.0 

0.345 -0.257 0.289 0.306 -0.020 0.240 21.0 
0.390 -0.275 0.225 0.476 -0.060 0.440 21.0 
0.408 0.190 -0.190 0.408 -0.060 0.480 21.0 

 

IV. SIMULATION 

In this section of this paper, there are three kinds of 

simulation that have the different types of weaving effect 

resulted. The first and second simulations show partial 

weaving effect from left to right and vice versa. The third 

simulation shows total weaving effect form left to right and 

back. To generate the fractal images in this simulation, the IFS 

randomize algorithm is used.  

In the first simulation, by comparing between two images 

for an example the images at T1 and T2 in Fig.2 below as a 

begining of transition event, there is a non-linear change of 

left branch of the tree-like fractal smoothly, especially the 

morphing effect of leaves on top of the branch from left to 

right is changed gradually and decreasingly to the right. For 

another example the images at T5 and T6 in Fig.2 below as an 

end of transition event, there is also a non-linear change of left 

branch of the tree-like fractal smoothly, especially the 

morphing effect of leaves on top of the branch, but in reverse 

direction of the previous example from right to left is changed 

gradually and increasingly to the left. The moderate morphing 

effect is occured between images at T3 and T4 in Fig.2 below. 

So the non-linear morphing effect is showed dramatically 

from one event to other events especially at the begining and 

at the end of events by metamorphic animation of tree-like 

object as a fractal object. By contrast the dramatical event 

occured in the middle event of the second simulation as 

displayed in Fig.3 below at T3, T4 and T5. The partial 

weaving effect is exhibited in the first and second simulations 

as explained later in the next sub-section. The third simulation 

shows weaving effect by bending the trunk of tree gently from 

left to right and back, The total weaving effect is exhibited in 

this simulation as explained later in the next sub-section. 

 

   

T1: left branch start to weave to right T2: only left branch weaved to right  
T3: only middle branch weaved to 

right 

   

T4: only right branch weaved to right 
T5: both right & middle branches 

weaved to left simultaneously 

T6: only left branch weaved to left 

(back to T1) 

Fig. 2. Transitional Images as the result of Metamorphic Animation of the 9 CAT tree-like fractal showing partial weaving effect (left to right and back) 



   
T1: right branch start to weave to left T2: only right branch weaved to left T3: only middle branch weave to left 

   

T4: only left branch weaved to left T5: only left branch weaved to right 
T6: both middle & right branches 

weaved to right simultaneously 

Fig. 3. Transitional Images as the result of Metamorphic Animation of the 10 CAT tree-like fractal showing partial weaving effect (right to left and back)  

     

T1 (type-b: table X) 
T2 (type-a & b 

interpolated) 
T3 (type-a: table I) 

T4 (type a & c 

interpolated) 
T5 (type-c: table XI) 

Fig. 4. Transitional Images as the result of Metamorphic Animation of the 6 CAT tree-like fractal showing total weaving effect left to right and back from T6 to 

T9 like in reversal order  from T4 to T1 (that are not displayed here) 

A. Partial Weaving Effect 

To simulate the metamorphic animation that is showing a 
weaving effect partially, the 9 CAT and 10 CAT tree-like 
fractals are used as two examples. To prepare this kind of 
animation, all coefficient of the last three CAT functions 
(marked in bold type) are modified one function at a time 
consecutively as can be seen in Table-II to V (for the 9 CAT 
tree-like fractal version) and Table-VI to IX (for the 10 CAT 
tree-like fractal version) below. The first and second of the six 
transitional images sets as the results of those animations that 
show the partial weaving effect of top branches from left to 
right and vice versa, can be seen at Fig.2 and Fig.3 above. To 
clarify the sequence of the partial weaving effect which are 
occured, please examine the notes at the bottom of each image 
from time sequence: T1 to T6 in both figures. 

 

B. Total Weaving Effect 

To simulate the metamorphic animation that is showing a 
weaving effect totally, the 6 CAT tree-like fractal is used as an 
example. To prepare this kind of animation, all coefficient-e 
(scale and position factor in axis-x) of all functions in Table-I 
(as type-a) are modified by shifting to the right and left (as type 
b and c), and the results can be seen in Table-X and XI 
(marked in bold type). By putting IFS code set in Tabel-X as 
the start and IFS code set in Table-I as target of node-1 of 
animation and IFS code set in Tabel-I as the start and IFS code 
set in Table-XI as target of node-2 of animation etc., then the 
total weaving effect will be exhibited by the animation. The 
five transitional images as the result of this animation that 
shows the total weaving effect of top and middle branches from 
left to right and back and also shows the bending effect of the 
trunk, can be seen at Fig.4 above. Please also examine the 
notes at the bottom of each image from time sequence: T1 to 
T5. 

 



V. CONCLUSION 

From the discussion of the metamorphic animation of tree-

like fractal based on a family of multi-transitional IFS code 

and it‟s simulation in the above sections, we conclude that 

there are two kinds of weaving effect as the results of 

metamorphic animations of tree-like fractals that depend on 

the kind of interpolation chosen. The metamorphic animations 

of the 9 and 10 CAT tree-like fractals show the partial 

weaving effect and the 6 CAT tree-like fractal shows the total 

weaving effect. There is a non-linear change occured in 

morphing effect especially in partial weaving simulations as 

another conclusion.  
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