
Dynamic Trapezoidal Rule

IRVAN JAHJA / 13509099
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13509099@std.stei.itb.ac.id

May 6, 2012

Abstract

The Trapezoidal Rule to approximate integral is known
for its simplicity, both in implementation and in de-
scription. The method usually takes as input the bounds
of the integral, as well as the number of pieces. In the
most commonly found trapesium method implementa-
tion, all the pieces are of the same length. This paper
discuss the possibility of having the piece length dy-
namic: that is, the lengths of the pieces may differ for
different pieces. Furthermore, this paper presents com-
parison between our dynamic trapesium method results
and the regular trapesium method results for several ex-
ample (hopefully representative) functions.

1 Introduction

1.1 Background

Integral approximation is an important field of numeri-
cal computation, taking part in fields such as eletrical
engineering, chemistry, and nuclear science. Due to
the importance of this field, various papers and books
have been published [3] [1]. In addition, various tech-
niques have been developed: Trapezium method, Rect-
angle method, Simpson’s method [2], to name just few.

One particular method, the trapezoidal rule, distin-
guish itself from the others by mean of simplicity, both
in description and in implementation. Indeed, it is by
this virtue that it usually get the honor to be the first al-
gorithm taught in many courses to approximate integral.
However, it suffers from lack of precision compared to
other algorithms, such as Gaussian quadrature.

Figure 1: Illustration of the Trapezoidal Rule

1.2 Roadmap

2 Trapezoidal Rule

The basic idea of trapezoidal rule is a method to approx-
imate the definite integral:∫ b

a

f(x) dx

such that∫ b

a

f(x) dx ≈ (b− a)
f(a) + f(b)

2

This method is illustrated in Figure 1.
Note that this approximation is exact if the function

f(x) is linear.

1

2.1 Iterative Trapezoidal Rule
To increase the accurracy of the Trapezoidal Rule, the
interval a...b is cut into several regions (n). Then, the
trapezoidal rule is iteratively applied to each of them,
and the sum of their results is returned as the result of
the execution. That is, the approximation becomes

∫ b

a

f(x) dx ≈
n∑

i=1

(bi − ai)
f(ai) + f(bi)

2

Where ai and bi are the two end points of the i-th
region.

The choice of the length of each of the regions can
be arbitrary, but a commonly used heuristic is to have
identical length for all the regions. In this paper how-
ever, we will also use choices of ai and bi that are not
integers.

3 Idea
The idea of our improvement for the Trapezoidal Rule
is based on the observation that some sections of a
function can be better approximated by trapezoids than
some others. For instance, for the function

f(x) =
1

x

The approximation by trapezoid is better for the re-
gions covering large positive values of x, as opposed
to the approximation used for very small positive val-
ues of x. The trapezoidal approximation for

∫ 2

1
f(x) is

0.75, and its actual value is around 0.6931471805599
(thus accounts for around 8.2% error). On the other
hand, the trapezoidal approximation for

∫ 101

100
f(x) is

0.00995049, while its actual value is 0.00995033 (thus
accounts for only around 0.00196% error).

Thus, it does not make sense to approximate both ar-
eas with the same number and length of trapezoids. To
achieve better accuracy in this case, it’s better to ap-
proximate regions with larger error with more trape-
zoids, and approximate regions with less error with less
trapezoids.

3.1 Algorithm
Our algorithm works by splitting regions with large ap-
proximated error into several smaller regions, thus in
effect approximating that region with more trapezoids.

We will first describe how we approximate the error of
a region, and then how we subdivide the regions with
large errors.

3.2 Approximating Error
The immediate question is on how to measure the error
of a region. To evaluate this error exactly defeats the
purpose of approximating integral, so what we want is
a way to approximate the error of the region. Our algo-
rithm uses the following function to calculate the error
of a region covering from a to b:

(b− a)(|(f(a)− f(c))− (f(c)− f(b))|)

Where c is equal to a+b
2 .

That is, our algorithm approximates the error linear
in the following two terms:

• (b− a), or, the length of the region. Indeed the ex-
pected error should be proportional with the length
of the region

• (b − a)(|(f(a) − f(a+b
2)) − (f(a+b

2) − f(b))|),
or, the difference of the difference of heights be-
tween its two end points and the midpoint. Notice
that this is an approximation of f(x) d

d2x . Indeed
the expected error should also be proportional with
derivative at approximately that region.

3.3 Trapezoids Distribution
We are now ready to present how our algorithm assigns
the regions of each trapezoid. For the sake of our dis-
cussion, we will assume that n, the number of regions,
is fixed.

The algorithm tries to calculate the region with the
largest error. Then, it divides that region into two
smaller regions with equal size. That is, it divides the
region spanning from a to b into two regions, one span-
ning from a to a+b

2 , the other one spanning from a+b
2 to

b.
An execution of the iteration above is illustrated in

Figure 2 and Figure 3.
The algorithm continues to do the above iteration as

long as the number of pieces is less than n.

3.4 Starting Point
The algorithm above assumes that we have several start-
ing regions. We tried and implemented two alternatives.

2

Figure 2: Trapezoid before splitted into two smaller
trapezoids

Figure 3: Trapezoid split into two smaller trapezoids of
equal region length

3.4.1 Fully Dynamic

This variant starts with exactly 1 region, spanning from
a to b. Hence, it performs the iteration as described
above exactly n− 1 times. This, however, is rather un-
stable for certain classes of functions, since there may
exist a large region represented by a large trapezoid.

3.4.2 Partially Dynamic

So, instead of going to the far extreme, the partial ap-
proach starts with n

2 initial regions of the same length,
partitioning a through b into n

2 regions. Hence, we per-
form exactly n

2 iterations of the algorithm above.
Note that this hybrid approach does not necessarily

need to start with n
2 . We chose n

2 as to obtain the ben-
efits of the dynamic (accuracy) and the non-dynamic
(stability) approaches.

3.5 Complexity
The only non trivial part of the algorithm is during
the select maximum error part. The naive implemen-
tation that represents the regions as a linked list will
run in O(n2) time. This, however, can be improved to
O(n log n) by storing the regions in a priority queue.
Hence, we are able to get the region with maximum er-
ror in O(log n), to take it out of the priority queue in
O(log n), and to insert two new regions in O(log n).
Hence, the overall running time is O(n log n).

4 Experimental Results

4.1 Running Example
We will now approximate the value of our running ex-
ample: ∫ 11

1

1

x
dx

The function is illustrated in Figure 4. The results of
the approximations are shown in Figure 5. Furthermore,
the case when the function is approximated using 10
Trapezoids is illustrated in Figure 6 through 8.

For this function, both Dynamic Trapezoidal Rules
achieve better accuracy than the Regular Trapezoidal
Rule. However, there are no noticable differences be-
tween the result of the Fully Dynamic Trapezoidal Rule
with the Partially Dynamic one. Thus, there exists some

3

Trapezoids Regular Full Partial Exact
10 2.4744227994227996 2.423962621643628 2.423845598845599 2.39789527279837
100 2.398720889730268 2.3981571368047554 2.3981535242004837 2.39789527279837
1000 2.3979035371778394 2.3978978623359493 2.397897853805243 2.39789527279837

Figure 5:
∫ 11

1
1
xdx Approximation Results

Figure 4: Plot of f(x) = 1
x

Figure 6: f(x) = 1
x approximated using Regular Trape-

zoid Rule with 10 trapezoids

Figure 7: f(x) = 1
x approximated using Full Dynamic

Trapezoid Rule with 10 trapezoids

Figure 8: f(x) = 1
x approximated using Partially Dy-

namic Trapezoid Rule with 10 trapezoids

4

Figure 9: Plot of f(x) = x3 + x

set of functions for which the dynamic trapezoidal rules
achieve better performance.

4.2 Polynomial Function
From the group of polynomial functions, we chose the
following integral:

∫ 2

−1

x3 + xdx =

∫ 2

−1

x(x− 1)(x+ 1)dx

The function is illustrated in Figure 9. The results of
the approximations are shown in Figure 10.

For this function, again both Dynamic Trapezoidal
Rules achieve better accurracy than the Regular Trape-
zoidal Rule. It is worth noting that for this function,
the difference in accurracy is not very big. As with the
previous function, there are no noticable differences be-
tween the result of the Fully Dynamic Trapezoidal Rule
with the Partially Dynamic one. Again, this demon-
strated that the dynamic trapezoidal rule achieves better
performance on some functions.

4.3 Exponential Function
From the group of exponential functions, we chose the
following integral: ∫ 2

−1

exdx

The function is illustrated in Figure 11. The results
of the approximations are shown in Figure 12.

Figure 11: Plot of f(x) = ex

Figure 13: Plot of f(x) = sin(ex)

For this example, the approximation given by all
three approaches are identical. However, the Full Dy-
namic Rule produces a slightly worse result. This
demonstrates that the Full Dynamic approach is less sta-
ble on some functions.

4.4 Periodic Function
From the group of exponential functions, we chose the
following integral: ∫ 3

0

sin(ex)dx

The function is illustrated in Figure 13. The results
of the approximations are shown in Figure 14.

5

Trapezoids Regular Full Partial Exact
10 5.317499999999999 5.29066875 5.2899627685546875 5.25
100 5.250675000000017 5.250535021875 5.250415306538343 5.25
1000 5.250006749999657 5.250005346654752 5.250005390072772 5.25

Figure 10:
∫ 2

−1
x3 + xdx Approximation Results

Trapezoids Regular Full Partial Exact
10 6.410338768199613 6.410955683541401 6.4103387681996145 6.38905609893
100 6.389269066047513 6.389271462915947 6.389269066047505 6.38905609893
1000 6.389058228615881 6.389058223688743 6.389058228615871 6.38905609893

Figure 12:
∫ 2

−1
exdx Approximation Results

Figure 15: Plot of f(x) = log(x)

For this function, again both Dynamic Trapezoidal
Rules achieve slightly better accurracy than the Regular
Trapezoidal Rule. It is worth noting that for this func-
tion, the difference in accurracy is not very big.

4.5 Logarithmic Function
From the group of logarithmic functions, we chose the
following integral: ∫ 10

0.1

log(x)dx

Here, log(x) denotes the natural logarithm of x.
The function is illustrated in Figure 15. The results

of the approximations are shown in Figure 16.

For this function, both Dynamic Trapezoidal Rules
achieve better accurracy than the Regular Trapezoidal
Rule.

5 Conclusion
For all our of experiments, the partially dynamic trape-
zoidal rule achieves same to better accurracy than the
regular trapezoidal rule. The full dynamic trapezoidal
rule is less stable in that respect. Hence, we have
demonstrated a possible improvement to the Trape-
zoidal Rule that retains its simplicity.

We note however, that our algorithm requires the
ability to evaluate the value of the function as some
given points, unlike the original trapesium algorithm
which can process a predefined set of values.

6 Appendix

6.1 Python Implementation of Algorithm
RegularTrapesiumIntegral implements the trapezoidal
rule with equal lengths of regions.

PartialDynamicTrapesiumIntegral implements the
trapezoidal rule with n

2 initial regions.
FullDynamicTrapesiumIntegral implements the

trapezoidal rule with 1 initial region.
Note that this implementation runs in O(n2), for the

sake of conciseness. Extending it to run in O(n log n)
using priority queue should be immediate.

def T r a p e s i u m C a l c u l a t e (p o i n t s , f) :

6

Trapezoids Regular Full Partial Exact
10 0.8321589398367933 0.5242524831787573 0.5348750428263918 0.6061244734
100 0.6065832841134191 0.6062251519068935 0.6054346615572611 0.6061244734
1000 0.6061290186207896 0.6061171688714586 0.6061176534923454 0.6061244734

Figure 14:
∫ 3

0
sin(ex)dx Approximation Results

Trapezoids Regular Full Partial Exact
10 12.859761993925044 13.229542659488793 13.22898435745594 13.356109439
100 13.348242519243419 13.354870936068403 13.354899436643572 13.356109439
1000 13.35602860759894 13.356097327129387 13.356097336893054 13.356109439

Figure 16:
∫ 10

0.1
log(x)dx Approximation Results

r e t = 0 . 0
f o r i in r a n g e (l e n (p o i n t s)−1) :

r e t += (f (p o i n t s [i]) + \
f (p o i n t s [i + 1])) \

/ 2 ∗ (p o i n t s [i +1] \
− p o i n t s [i])

re turn r e t

def R e g u l a r T r a p e s i u m I n t e g r a l (
low , hi , n , f) :

a s s e r t n > 0
a s s e r t low <= h i
s t e p = (h i − low) / n
pos = low
h = [low]
f o r in r a n g e (n) :

pos += s t e p
h . append (pos)

re turn T r a p e s i u m C a l c u l a t e (h , f)

def P a r t i a l D y n a m i c T r a p e s i u m I n t e g r a l (
low , hi , n , f) :

a s s e r t n > 0
a s s e r t n % 2 == 0
a s s e r t low <= h i

n / / = 2

h = [low]
f o r i in r a n g e (n) :

h . append (low + (i +1) ∗ \
(h i − low) / n)

f o r in r a n g e (n) :
Find t h e l a r g e s t e r r o r
c = −1
c e r r = 0
f o r j in r a n g e (l e n (h)−1) :

v t = f ((h [j] + h [j + 1]) / 2)
e r r = (h [j +1] − h [j]) ∗ \

abs ((v t − f (h [j])) − \
(f (h [j + 1]) − v t))

i f c == −1 or c e r r < e r r :
c e r r = e r r
c = j

mid = (h [c] + h [c + 1]) / 2
c += 1
h = h [: c] + [mid] + h [c :]

re turn T r a p e s i u m C a l c u l a t e (h , f)

def F u l l D y n a m i c T r a p e s i u m I n t e g r a l (
low , hi , n , f) :

a s s e r t n > 0
a s s e r t low <= h i

h = [low , h i]
n −= 1

f o r in r a n g e (n) :
Find t h e l a r g e s t e r r o r
c = −1
c e r r = 0
f o r j in r a n g e (l e n (h)−1) :

7

v t = f ((h [j] + h [j + 1]) / 2)
e r r = (h [j +1] − h [j]) ∗ \

abs ((v t − f (h [j])) − \
(f (h [j + 1]) − v t))

i f c == −1 or c e r r < e r r :
c e r r = e r r
c = j

C a l c u l a t e m i d p o i n t
mid = (h [c] + h [c + 1]) / 2
c += 1
h = h [: c] + [mid] + h [c :]

re turn T r a p e s i u m C a l c u l a t e (h , f)

6.2 Declaration of Non Plagiarism
I hereby confirm that this paper is the product of my
own work and is not an excerpt and/or translation of the
work of other entities.

Bandung, May 6th 2012

Irvan Jahja
13509099

References
[1] Begnaud Francis Hildebrand. Introduction to nu-

merical analysis: 2nd edition. Dover Publications,
Inc., New York, NY, USA, 1987.

[2] John H. Matthews. Simpson’s 3/8 Rule for Numeri-
cal Integration. California State University, Fuller-
ton, 2004.

[3] Gordon K. Smyth. Numerical integration.

8

