
Paper IF2091 Struktur Diskrit – 1st Semester Year 2011/2012

B+ Tree and Implementation in Filesystem

Satria Ady Pradana (13510030)

Informatic Engineering

School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Satria.ady@students.itb.ac.id

Abstract—In computer science there are needs to organize

data stored in storage media efficiently. Several approaches

has been introduced, one approach is using B+ tree data

structure. This paper will cover the B+ tree data structure

and its implementation filesystem and data organization.

Index Terms—B+ tree, tree, key, filesystem, data

organization.

1. INTRODUCTION

Although filesystem has been created in early stage of

computer development, many improvement and change

has been done. Therefore, the development of the

filesystem is still go on even until this time.

People has implement many approach to create a better

and efficient filesystem. One of technology behind

nowaday is B+ tree. As the natural behavior of B+ tree, it

has been chosen and proved as a suitable approach to

implement filesystem. Some filesystem examples that

implement B+ tree are NTFS, ReiserFS, NSS, XFS etc.

1.1. B+ TREE

1.1.1. B+ TREE HISTORY

B+ tree is a rooted tree which is a variant of B tree. B

Tree itself was first described in the paper Organization

and Maintenance of Large Ordered Indices. Acta

Informatica 1: 173-189 (1972) by Rudolf Bayer and

Edward M. McCreight. There is no single paper

introducing the B+ tree concept.

1.1.2. B+ TREE DEFINITION

B+ tree is a balanced m-ary search tree. Furthermore, a

B+ tree or B plus tree is a type of tree which represents

sorted data in a way that allows for efficient insertion,

retrieval and removal of records, each of which is

identified by a key. It is a dynamic, multilevel index, with

maximum and minimum bounds on the number of keys in

each segment or vertex or node.

B+ tree guarantee that the tree structure will be

balanced. All leaves are always height balanced and

located at same level. There will not be leaves longer than

others. This also guarantee that processing time taken will

be equal.

B+ tree also a search tree. The tree order the key in a

way that it allows a fast searching. The subtree which has

less value key are located left. While the greatest value

key is always placed at the most right place.

1.2. FILESYSTEM

A filesystem is means to organize data by providing

procedure to store, retrieve and update data, as well as

manage the available space on the device(s) which

contain it.

Filesystem play a great role as it provides mechanism

to control access to data. Ensuring realibility is a major

responsibility of a filesystem.

File system are used on the data storage devices such as

hard disk drives, floppy disk, optical disk, or flash

memory storage devices to maintain the physical location

of computer files.

2. B+ TREE STRUCTURE

2.1. NODES STRUCTURE

The B+ tree consist of two type of nodes: leaves and

internal nodes (non-leaf nodes). However, the data, or

sometimes referred as records, are always stored in the

leaves. All leaves are then linked sequentially.

Figure 1: Node structure

Every node in B+ tree can have several key and

children variables. The number of children nodes is not

bounded to a fix number or fix size like in binary tree.

Instead, B+ tree can dynamically expand its branch while

sort the key at the same time.

Paper IF2091 Struktur Diskrit – 1st Semester Year 2011/2012

Every key links to a child node. This node also has

keys with value less than its parent’s key. Both internal

nodes and leaves have key and both of them are used as

index to data. Although both seems similiar, but the keys

in both node types are different in function. All the keys

in internal nodes are served as dummies. They are used

only as indexes and guide to the real data in the leaves

(pointing to where the data are) while the key in leaves

may duplicate as key in internal nodes. Those keys are the

keys that point directly to data.

The searching for a value in the B+ tree always starts at

the root node and moves downward until it reaches a leaf

node.

The order, or branching factor b of a B+ tree, measures

the capacity of nodes (i.e. number of children nodes) for

internal nodes. The actual number of children for a node,

denoted as m, is constrained such ⌈ ⌉ . The

root is an exception internal node, it is allowed to have as

few as two children. The leaves have no children, but are

constrained so that the number of keys must be at least

⌊ ⌋and at most b-1.

When B+ tree is in a condition nearly empty, it only

contain one node, which is a leaf node. The single leaf is

also referred as a root in this case. In this condition, this

node is permitted to have as little as one key if necessary

and at most b.

For instance, if the order of a B+ tree is 9, each internal

node (except the root) may have children between 5 and 9

while the root may have between 2 and 9.

Another example can be seen in figure below:

Figure 2: Simple B+ tree example.

The figure above explain another example of B+ tree

where the 7 keys (denoted by number 1 to 7) link into 7

data values (denoted by d1 to d7). In this case, there is

only root and three leaves. The root is bounded by order 3

or b = 3. This leads that the node can hold at most 3

children at the same time. As shown in the figure, root has

2 key which are 3 and 5. This key will guide to the actual

data. If the key sought is less than 3 than it will be guided

to first child. If that condition is not satisfied (key sought

is greater than or equal 3) the root will traverse to next

key which is 5. If the sought key is less than 5 (and

greater than or equal 3) the searching will be guided to

second node. Last if the key sought is 5 or beyond, the

pointer will be redirect to third child. The linked list (red)

is used for a rapid in-order traversal.

If we recall the constraint of branching factor and see

the previous figure, we could get conclusion that each

internal nodes must be filled half fully at minimum. So

far, the insertion and deletion algorithms must guarantee

that each node in the tree will be at least half full.

2.2. PHYSICAL REPRESENTATION

As described in section 2.1, the tree know two types of

node: internal nodes and leaves. This section will

furthermore cover the physical representation of each

node type.

2.2.1. INTERNAL NODES

An internal node in B+ tree consists of a set of key

values and pointers. The set of keys and values are

ordered so that a pointer is followed by a key value. The

last key value is followed by one pointer.

Each pointer points to nodes containing values that are

less than the key. The last pointer in an internal node is

called the infinity pointer. It points to a node containing

key values that are greater than the last key value in the

node.

When an internal nodes is searched for a key value, the

search begins at the leftmost key value and moves

rightwards along the keys.

2.2.2. LEAF NODES

A leaf node in B+ tree consists of a set of key values

and data pointers. The set of key values and data pointers

are ordered by the key values. The data pointer points to a

record or block or the actual data identified by the key

value.

Searching a leaf node for a key value begins at the

leftmost value and moves rightwards until a matching key

is found or else the search will return with no data.

2.3. B+ TREE CHARACTERISTICS

The depth or height of B+tree can be computed by

following formula:

where h is the height, b is the branching factor, and n is

the total nodes in tree (including root and leaves).

The formula above can be proven as below:

1. As the node has branching factor b, the number of

children will be at most b.

2. In the k-th level, the number of node would be

3. The total number of node of h-height would be

 ∑

 (h is counted from 0)

4. By simple algebra we know

5. Using logarithm we get
 which is similiar to ordinary tree formula.

In spite the height formula is similiar with other m-ary

tree, the B+ tree branches (factor b) can be larger. Thus,

Paper IF2091 Struktur Diskrit – 1st Semester Year 2011/2012

the base of logarithm can be large and the height can be as

minimum.as possible. This is one of B+ tree benefit, as

the data grow large, the height can be kept as minimum as

possible.

Other characteristics can be founded in B+ tree. For a

b-order B+ tree with h-levels of index, the tree have

following properties (these properties would not be cover

furthermore):

 The maximum number of records stored is

 The minimum number of records stored is

 ⌈

⌉

 The minimum number of keys is

 ⌈

⌉

 Space required to store the tree is O(n)

 Inserting a record requires operations.

 Finding a record requires operations.

 Removing a record requires operations.

3. FILESYSTEM AND B+ TREE IMPLEMENTATION

3.1. DATA REPRESENTATION ON THE DISK

A file and a directory is a collection of information that

connected and stored in storage media. Generally,

operation on the file can be one of creating, writing,

reading, removing, searching, opening, and closing.

Storage media (often referred to disk based media)

physically is a disk. To store a data on disk, file system

will divided disk into regions.

Figure 3: A disk structure.

(A) Track

(B) Geometrical sector

(C) Track sector

(D) Cluster

A track (as marked by A and red color) is a circular

path on the surface of the disk which information is

magnetically recorded.

A sector is a subdivision of a track. Each sector stored

a fixed amount of user data. In the term of mathematic,

the word sector means a portion of a disk between a

center, two radii and a corresponding arc (see figure 3,

item B) which is shaped like a slice of pie. Thus the disk

sector (Figure 3, item C) refers to the intersection of a

track and mathematical sector.

A cluster or allocation unit is the unit of disk space

allocation for files and directories. To reduce the

overhead of managing on-disk data structures, the file

system does not allocate individual disk sector, but

contiguous group of sector, called cluster. There on a disk

that used 512-byte sectors, a 512-byte cluster contains one

sector and a 4-kibibyte (KiB) cluster contains eight

sectors.

A cluster is the smallest logical amount of the disk

space that can be allocated to hold a file. Storing a small

files on files on a filesystem with large clusters will waste

disk space and must be avoided.

A cluster size may vary in several file system but

typical cluster size are ranged from 1 sector (512 B) to

128 sectors (64 KiB) in common.

A cluster need not to be physically contiguous on the

disk; it may span more than one track or if sector

interleaving is used, may even be discontiguous within a

track. This condition is still legal as the sectors are still

logically contiguous.

A whole data in computer can be represented as block

in the disk. A block is a combination of some cluster

needed to store data (it can be actual data or a pointer,

later in section 3.3). The data can be placed in one block

or accross many blocks.

3.2. FILESYSTEM ORGANIZATION

A filesystem is a system that managing the operation in

the disk or storage media. It is responsible for organizing

files and directories, and keeping track of which area of

the media belong to which file and which are not being

used. It will provide access to certain block and retrieve

information in those block. The flow of access occured in

a process can be as shown in below:

1. Application programs

2. Logical file system

3. File – organization module

4. Basic file system

5. I/O control

6. devicess

Thus are the cycle that a filesystem must maintain. The

application program is not allowed to directly access the

disk, but using filesystem.

3.3. INDEXING PROBLEM AND B+ TREE

IMPLEMENTATION

The development of storage media has growth very fast

in term of speed and capacity. But still the issue is still the

same. The data located on the disk are distributed on the

many side of the disk. Data allocated on the disk is placed

Paper IF2091 Struktur Diskrit – 1st Semester Year 2011/2012

in some blocks.

The computer can only transfer one block a time

between main memory and the disc. This means that to

retrieve one record a whole block of data also be

retrieved. Therefore, it is important to know in which

block a record is stored and to retrieve the minimum

number of block when looking for a record.

The problem filesystem must handle is deciding in

which block each record should be placed and what

information should be stored in addition to the record to

allow the record to be retrieved easily.

Therefore, to allocate data and addressing a correct

block containing data, an access mechanism is needed.

The mechanism is known as indexes and the scheme is

known as Indexed Allocation.

Figure 4: Simple indexing

The mechanism of indexing is quite simple. The actual

data location are pointed with some certain pointers.

Those pointers then will be combined in a block name

index block. Every file have own index block. A directory

contain address of index block.

Thus, the scheme above are quite similiar with the

properties of B+ tree. The data blocks can be considered

as actual data or record. It is then located in the leaves

strcture and then pointed by approriated pointer in upper

nodes. In figure 5 example, the data block are the relative

file while the pointer that point the data is denoted by

logical record number. The key to identify the data is the

last name.

The problem of indexing is in the size of blocks. If

index block is small, the block would not enough to hold

a big size file. While if the block is too large, there will be

waste as described in section 3.1.

Figure 5: Indexed allocation scheme.

In above figure, the block containing whole data are

1,9,10,16, and 25. But the actual data are arranged in

order 9,16,1,10, and 25. Those each data block are sliced

or piece of whole data. Each data then pointed by a

pointer and placed in a single index block (block 19).

Mechanism used in indexed allocation cover: linked

scheme, multilevel index, combined scheme. This section

will also cover implementation of B+ tree in this scheme.

Linked scheme mechanism can link several index

block. A large file containing large data. A single block

would not be enough to accomodate that file, so do the

index block. As the data distributed across many blocks,

pointer are needed to make sure the integrity of data. If

pointer is not enough to be hold in whole index block, the

last pointer of this block will point to another index block.

That index block will hold a next pointer. Thus the

integrity of data will be a file will be kept. But, if pointer

only need one index block, the last pointer will be null.

Thus, the scheme can be covered by using B+ tree. The

pieces of data pointer can be hold in the a single leave

node. If the data is large enough, the pointer to next leave

node is provided to give immediate access to next piece

data. Therefore, a performance of accessing data can be

high and process will take less operation.

In multilevel index, index block in first level will point

to second level index blocks that will point to the address

of data. The mechanism can be repeated until third level

or fourth level depend on the needed amount of data.

Thus the multilevel index is a direct implementation of

B+ tree as the index can be placed in various level of tree.

Combined scheme will combine direct block and

indirect block. A direct block defined as a block

containing a pointer that point the data directly while the

indirect block will point to another block. An indirect

block has three pointers: first pointer point to a single

indirect block. Second pointer points to double indirect

block. Third pointer points to triple indirect block.

Paper IF2091 Struktur Diskrit – 1st Semester Year 2011/2012

Figure 6: Direct and Indirect Indexes

The figure 6 shows the basic of multilevel indexing and

each indirect can be implemented as a regular B+ tree.

Each index block branching and point to another index

block. Thus the cycle must be kept as minimal.

The performance of indexing will be depended on

index structure, file size, and position of block.

4. CONCLUSION

B+ tree can be implemented to address problem in

filesystem. Using approriate approach, the data can be

managed and organized well.

5. REFERENCE

Munir, Rinaldi. “Matematika Diskrit”. 2010. Penerbit

Informatika.

Siang, Jong Jek. “Matematika Diskrit dan Aplikasinya pada

Ilmu Komputer”. 2009. Penerbit ANDI.

Rosen, Kenneth H. “Discrete Mathematics and Its

Applications Fifth Edition”. 2003. McGraw-Hill.

WikipediaFoundation, Inc. http://en.wikipedia.org/. (access

time: November 29th, 2011).

Chandra, Ian. “PC DOS versi 3.10”. 1988. Gramedia.

6. DECLARATION

With this I, Satria Ady Pradana, declare that my paper is

originally written by me, not a transliteration, translation,

nor plagiarism of another paper.

Bandung, 12 Desember 2011

signed

Satria Ady Pradana (13510030)

http://en.wikipedia.org/

