Stanford University, Palo Alto, CA, USA January 2002

Information Embedding and Digital Watermarking

J.J. Eggers

Telecommunications Lab Univ. of Erlangen-Nuremberg eggers@LNT.de

Overview

- General concepts and state-of-the-art
- Scalar Costa scheme
- The game between embedder and attacker
- Example application:
 - Payload for SCS watermarks in image data
 - Image integrity verification

Analog and Digital Multimedia

- Distribution net required
- Difficult to edit
- "Built-in" protection against copying, redistribution, editing
- "Free" distribution net: Internet
- Simple editing
- No inherent protection against copying, redistribution, editing

Digital Watermarking

Spread-Spectrum Watermarking

- Side information about the host data is not exploited!

- Properties
 - pseudo-noise sequence w = secret key
 - correlation detection is very reliable for long signals
 - host signal is dominating interference source

Model for Blind Watermarking

Information Embedding and Digital Watermarking

IID Host Signals & AWGN Attack

Costa's Scheme

- Costa, 83: "Writing on Dirty Paper"
- Analysis of communication with side information:
 - IID Gaussian noise
 - IID Gaussian host signal
- Information theoretic result:
 - Watermark capacity is independent of host signal!
- Costa's Scheme
 - is not practical
 - gives insights into the problem of communication with side information

Scalar Costa Scheme (SCS): U = uniform scalar quantizer

- Encode message $m = d_1 d_2 \cdots d_N$ & embed in $\mathbf{x} = x_1 x_2 \cdots x_N$
- Example: embed $d_n \in \{0,1\}$ (binary SCS)

 $0 \le \alpha \le 1$

PDF of Public Signal s

PDF of Extracted Signal y

SCS: p(y|d=0) and p(y|d=1) computed numerically

Blind Watermarking Capacity

Watermarking as a Game

Effective AWGN Channel Model for Scaling & AWGN (SAWGN)

Watermark Capacity after SAWGN attack

DWR = Document-to-WM-Power Ratio ~ Quality after embedding DAR = Document-to-Attack-Power Ratio ~ Quality after attack

Information Embedding and Digital Watermarking

Non-IID Host Signals Linear Filtering & Additive Noise

- Decompose host signal
 - M approximately independent sub-channels
 - white signal statistics within sub-channel
- Linear filtering & additive "colored" noise (FACGN) attack

• Watermark communication over parallel channels

Optimum Allocation of Embedding and Attack Distortion (I)

- Constraints
 - total embedding distortion
 - $D_{\text{Embedding}} \geq \sum_{i} rate_{i} \times weight_{i} \times emb-distortion_{j}$
 - total attack distortion

$$D_{Attack} \ge \sum_{i} rate_{i} \times weight_{i} \times attack - distortion$$

Objective function

$$C_{FACGN} = \max_{\{e_j\}} \min_{\{a_j\}} \sum_j rate_j \times C_{SAWGN,j}(host - power_j, e_j, a_j)$$

e;

 a_i

Optimum Allocation of Embedding and Attack Distortion (II)

- No unique solution over entire distortion range!
- Low distortion: white
 - attack ~ "add noise"
 - force attack to spread its power over all channels
- <u>High distortion</u>: **PSC**
 - Power-Spectrum-Cond.
 - attack ~ "throw away"
 - attack cannot discard watermark without also destroying original

Image Watermark Payload

Image Integrity Verification (I)

- Watermark entire image
- Local detection
 - H₀: no watermark = modified content
 - H₁: watermark = no content modification

Image Integrity Verification (II)

manipulated and

SCS watermarked JPEG compressed (Q=70)

detected non-authentic regions

Detection with sliding window of size 32x32.

Correct detection of manipulated image regions.

Detection error in flat image region due to compression.

Information Embedding and Digital Watermarking

Image Integrity Verification (III)

suffers from host signal interference 10⁰ detection error rate SS-WM 10-2 SCS-WM 10⁻⁴ 32 36 40 PSNR [dB]

- Embedding into coefficients of 8x8 block DCT
- Detect from
 32x32 pixel blocks
- Measure average of false positive and false negative
- Test image "Girl"

Image quality after JPEG compression

Summary

- Blind watermarking
 - original data is useful side information
 - Scalar Costa Scheme (SCS): practical & performs close to capacity limits
- Analysis of watermarking via game theory
- Some open problems
 - efficient synchronization algorithms
 - robustness dependent on host PDF

Spread-Transform Watermarking

Capacity of ST-Watermarking

• ST-Watermarking is useful for WNR<WNR_{crit}

• SCS requires <u>lower</u> <u>spread-transform</u> length and achieves <u>higher rates</u> than comparable schemes at the same WNR!