Telecommunications Seminar WS 1998

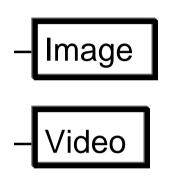
"Data Hiding, Digital Watermarking and Secure Communications"

Image and Video Watermarking

Herbert Buchner University of Erlangen-Nuremberg 16.12.1998

Outline

- 1. Introduction: Watermarking of Visual Data
- 2. Some Approaches for Image Data
 - Spread spectrum concept
 - Image adaptive schemes
 - Robustness to geometric distortions
- 3. Watermarking of Video Data
 - Uncompressed video
 - Compressed video
- 4. Conclusions


1.Watermarking of Images and Video

 Data embedding / data hiding

- Watermarking

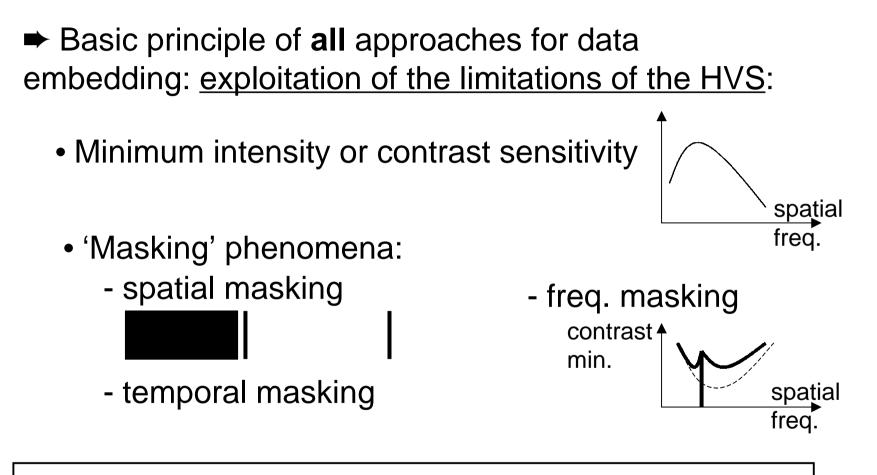
- Steganography

• ... in host signal:

- Audio
- Formatted text

General Requirements

- Invisibility for the human visual system (HVS)
- Robustness to intentional and unintentional attacks:
 - Lossy compression schemes (JPEG, MPEG,...)
 - Linear and nonlinear filtering
 - Geometric distortions (scaling, cropping, rotation...)
 - Collusion
 - ...
- Security

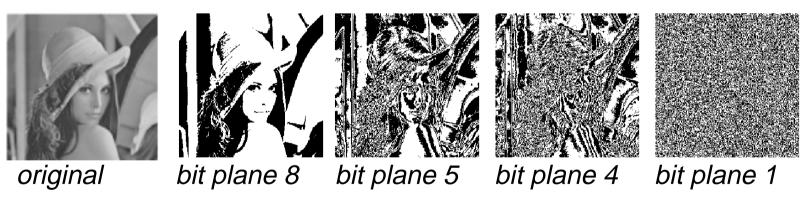

Building a Watermark I

consists of two parts:

INSERTION	WATERMARK
STRATEGY	STRUCTURE
Where in the host signal shall we place the information?	<i>How</i> shall we place the additional information into the signal?

in order to comply with the requirements

Building a Watermark II

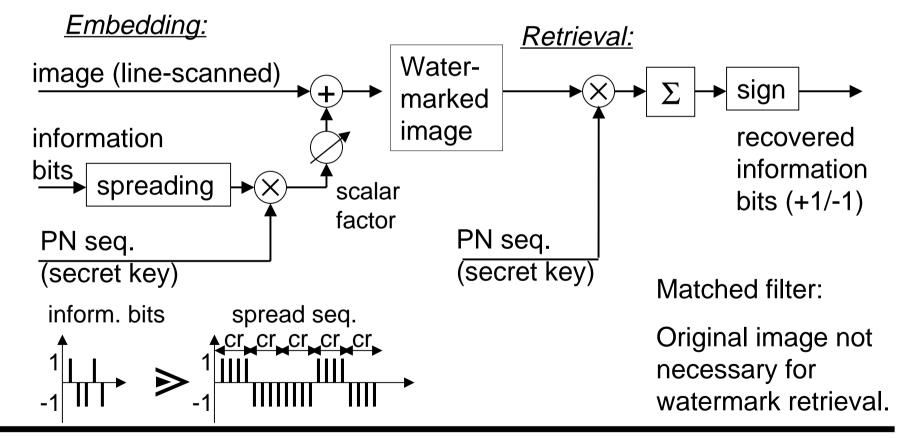

Note: framework has no general optimum solution !

2. Some Approaches for Image Data

LSB-type methods - one of the simplest concepts for data embedding in noise-free environments.

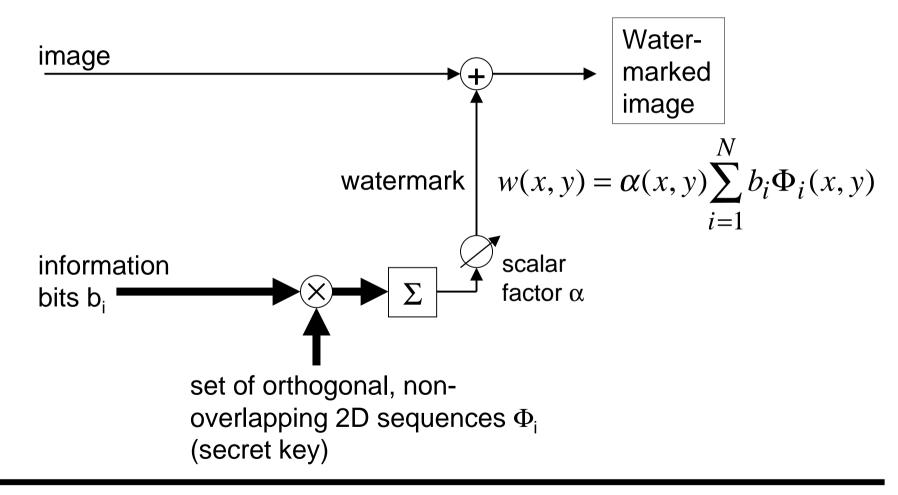
Subset LSBs of the image are replaced by other data bits.

• Embedded data invisible (LSBs=least perceptible bits!)



- **INSECURE**: it is known where the information bits are
- NOT ROBUST: since changes of LSBs invisible !

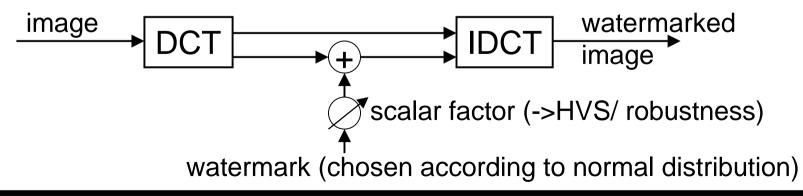
Spread Spectrum Concept I


<u>Greater robustness</u>: How to imperceptibly insert a watermark into perceptually significant portions of the image?

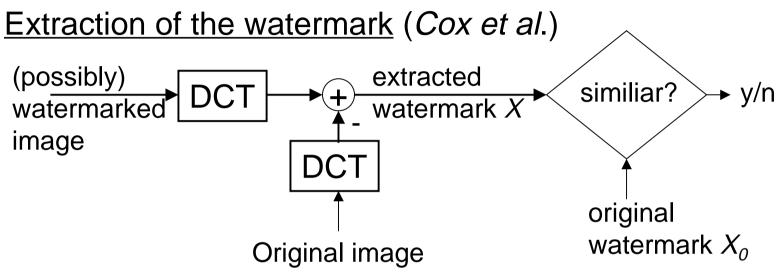
Spread spectrum approach in the spatial domain (1D watermark)

Spread Spectrum Concept II

Extension: 2D watermark in the spatial domain (by Kutter)


Spread Spectrum Concept III

Watermarking in frequency domain increases robustness


- Robustness to cropping: watermark spread over whole spatial extent
- Lossy compression (JPEG) usually eliminates non-salient spectral comp.
- Shrinking leads to loss in HF components only

Approach by *Cox et al*.:

Watermark embedded in largest magnitude DCT coefficients (>1000 coeff. recommended) ⇒ frequency spreading !

Spread Spectrum Concept IV

Properties of the method:

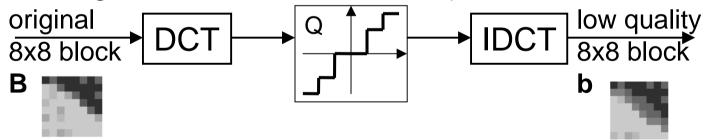
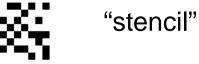
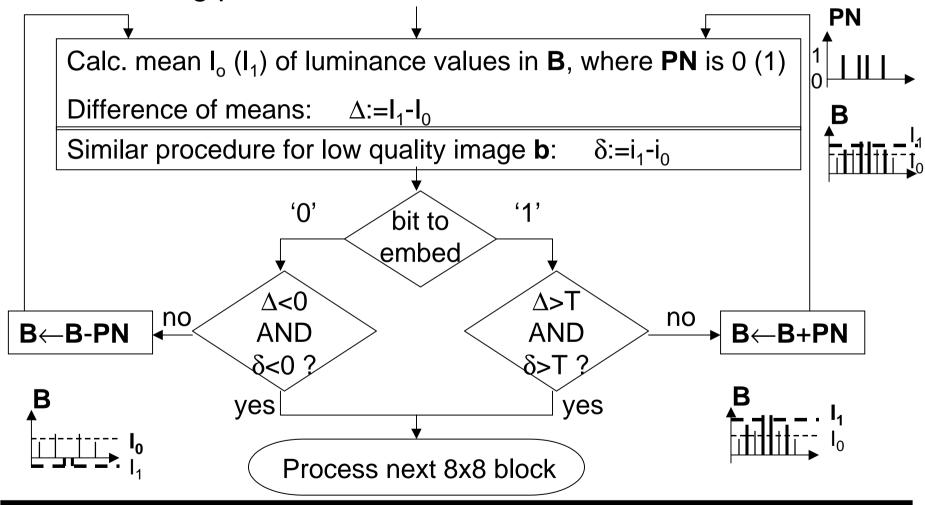

- <u>Very reliable</u> (robust to JPEG encoding, dithering, clipping with JPEG encoding, averaging of separately watermarked images, and combination of printing, photocopying, subsequent rescanning and rescaling)
- <u>Major drawback</u>: watermarked and original images necessary!

Image Adaptive Schemes I


Can make *explicit* use of characteristics of the image and/or HVS.

Simple example in spatial domain: image adaptive separation in histogram (by Langelaar et al.):

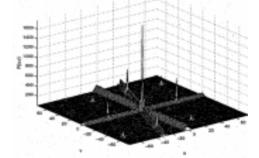
- Select (secret key 1) one 8x8 block B of the image
- Create a low quality copy of the block (preventive simulation of JPEG image to increase the robustness!):

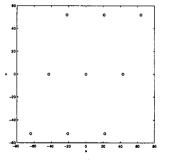


• Create a binary 8x8 pseudo-random pattern (secret key 2) PN:

Image Adaptive Schemes II

Watermarking procedure for each bit:

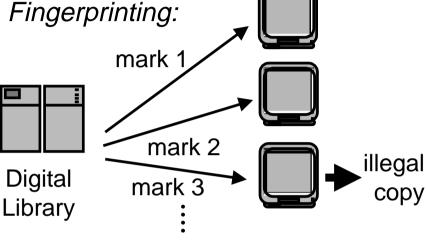

Robustness to Geometric Distortions


Two different types of approaches possible:

- Watermarking in a transformation invariant domain (e.g. magnitude of Fourier transform is shift invariant)
- Embedding some additional hidden grid to determine and invert the distortion before watermark retrieval

Method by Kutter: multiple embedding at shifted locations

watermarked image autocorrelation funct. extracted peaks Method allows watermark recovery after translation, cropping, scaling, rotation, shearing, change of aspect ratio


3. Watermarking of Video Data

Main differences to image watermarking:

- Much higher volume of data (bandwidth)
- Real-time embedding

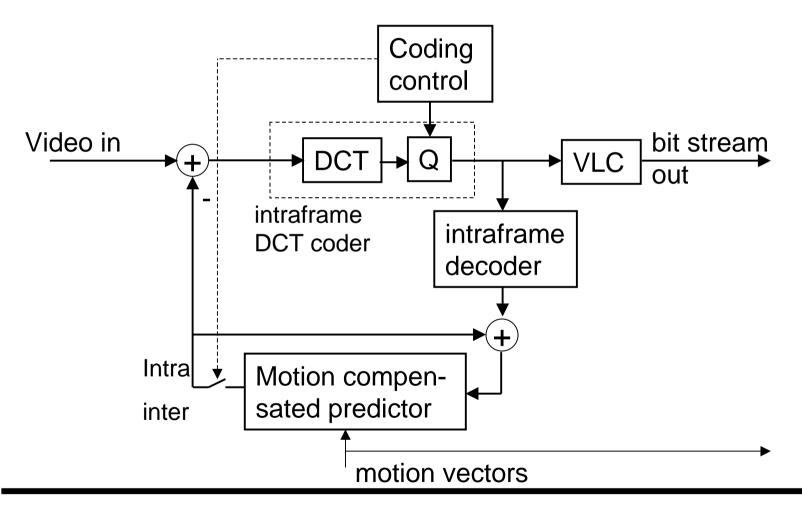
- Constant bit-rate (with/without watermark)
- Low complexity
- Compressed domain processing
- Interoperability

Watermarking of Uncompressed Video

- If real-time embedding is not required: uncompressed video can be watermarked frame by frame using the conventional methods for still images
- One watermark bit can be distributed over several video frames to increase robustness

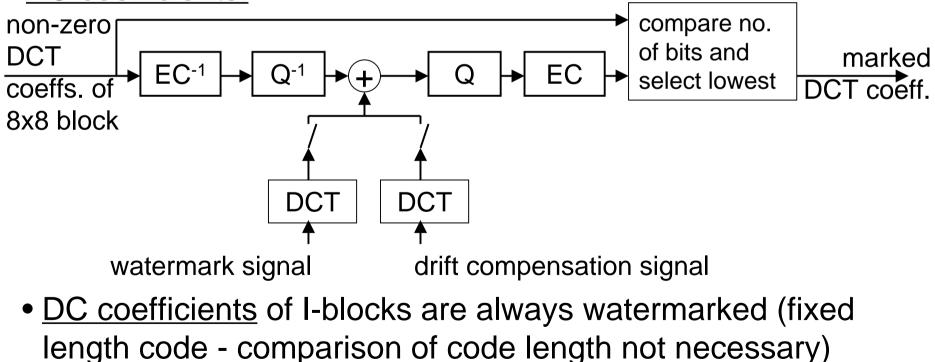
Hybrid Coding Schemes I

Basic principles:


(MPEG, H.261, H.263)

- Block-based transform coding (DCT)
- Motion compensated prediction

Hybrid Coding Schemes II


Simplified Block Diagram of a Generic Hybrid Coding Scheme:

Watermarking of Compressed Video I

<u>Method for additive spread spectrum watermarking in hybrid</u> <u>coding schemes by *Hartung and Girod*</u>: Adding video data and watermark for each 8x8 block in the DCT domain:

• AC coefficients:

Watermarking of Compressed Video II

- Scheme works with all additive watermark signals
- Visible artifacts avoided by addition of a drift compensation signal (motion-compensated hybrid coding works recursively!)
- Complexity comparable to MPEG decoding
- Method exploits masking characteristics indirectly, since only non-zero DCT coefficients are watermarked
- The watermark can be retrieved from the decoded sequence

4. Conclusions

- Watermarking is data embedding with several strict requirements
- Watermarks must be invisible:

All approaches for watermarking of visual data implicitly or explicitly exploit the limitations of the human visual system

- Watermarks should be placed in perceptibly significant portions of the image/video to ensure robustness
- Most additive methods based on spread spectrum concept
- Applications for video watermarking usually require more sophisticated approaches if real time embedding is desired (embedding in the compressed domain)

References

- B. Girod, "Image Communication", Lecture, Univ. of Erlangen-Nuremberg
- H. Niemann, "Mustererkennung", Lecture, Univ. of Erlangen-Nuremberg
- M.D. Swanson, M. Kobayashi, A.H.Tewfik, "Multimedia Data-Embedding and Watermarking Technologies", Proc. IEEE, vol. 86, no. 6, June 1998
- I.J. Cox, J. Kilian, T. Leighton, T. Shamoon, "Secure Spread Spectrum Watermarking for Multimedia", IEEE Trans. Image Processing, vol. 6, no. 12, Dec. 1997
- F. Hartung, B. Girod, "Watermarking of uncompressed and compressed video", Signal Processing, vol. 66, 1998
- F. Hartung, U. Horn, "Codierung digitaler Videosignale nach dem MPEG-Standard", me, vol. 9, 1995 (in German)

References

- F. Hartung, B. Girod, "Digital watermarking of MPEG-2 coded video in the bitstream domain", Proc. ICASSP97, Apr. 1997
- E. Koch, J. Zhao, "Towards Robust and Hidden Image Copyright Labeling", Proc. Of 1995 IEEE Workshop on Nonlinear Signal and Image Processing, June 1995 (available at: http://poseidon.csd.auth.gr/workshop/papers/p_19_1.html)
- G. C. Langelaar, J. C. A. van der Lubbe, J. Biemond, "Copy Protection for Multimedia Data based on Labeling Techniques" (available at: http:// wwwit.et.tudelft.nl/html/research/smash/public/benlx96/benelux_cr.html)
- M. Kutter, F. Jordan, F. Bossen, "Digital Signature of Color Images using Amplitude Modulation", Proc. SPIE-E197, 1997, pp. 518-526
- M. Kutter, "Watermarking resisting to translation, rotation and scaling", Proc. of SPIE, Nov. 1998