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Introduction

Knowing that a complex number in B2 has the form
z=a+ib (5.1)

it is reasonable to presume that a complex number in B* should take the form

z=a-+ib+jc (5.2)
where i and j are unit imaginaries: i* = j* = — 1. However, when two such objects are multiplied
together we have

7173 = (ay + iby + jo W az + iba + jea) (5.3)
which expands to
217 = aay + i by + jaes + ibyay + i*byby + iibie; + joraz + jich: + o (5.4)
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Substituting i* = j* = —1 into Eq. (5.4) and collecting up like terms we obtain
I = (ﬂlaz - blbz - flcz:l + i(ﬂlbz + b|ﬂ1} +j(ﬂ|l:2 + C|ﬂz} + Ijbp‘:z +}IC1&2 ‘_5.5)

which leaves the terms ij and ji undefined. These stumped Hamilton for many years, but his
tenacity won the day, and he eventually came up with an incredible idea which involved extending
the triple into a 4-tuple:

z=a+ib+jc+ kd. (5.6)

When two such objects are multiplied together we have
21z = (ay 4+ iby 4+ jey + kdy )@y + iby + jea + kds) (5.7)
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which expands to
2y = My + ia by + jayc; + kayds
+ibyas + by by + ijbicy + ikbyd;
+ jeray + jiciby +}'1l:|_€3 + jkeydy
+ kdya; + kidib; + kidic; + k*dyd. (5.8)
Substituting i* = j* = k* = —1 in Eq. (5.8) and collecting up like terms we obtain
5z = aay — by — e — didy
+ilaih: + b)) + jlae: + aan) + kiayds + diaz)
+ ijbycy + tkbyds + jicybs + jkeidy + kidyby + kjdyca. (5.9)
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But this, too, has some undefined terms: ij, ik, ji, jk, ki, kj. However, Hamilton was a genius and
he resolved the problem by proposing the following rules:

ij=k jk=i ki=j ji=—k k=—-i tk=—j (5.10)
which when substituted into Eq. (5.9) produces
2z = aydy — by — s — dydy
+i(aby + biay) +jlaye + ca) + k(ayd;, + dyas)
+ kbycz — jbydy — keybs + dcydy + jdiby — idyca. (5.11)
Collecting up like terms we obtain
5z = aydy — (b + er6a + dida)
+i(ayh, + ba, 4+ ¢d; — dicy)
+jlae: + cras + dibs — bids)
4+ kiayds + dias + byc: — e1bs). {5.12)
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Although this does not have any undefined terms it can be tidied up as follows:
21z = ayay — (biby + ey6z + dyddy)
+ ay(iby + joz + kdy) + ax(iby + jey + kd))
+ilady — dica) + jldiby — bydy) + kibie: — e1bs) {5.13)
The last step is to write the original object as the sum of a scalar and a vector starting with:
=54V Zm=5+V: (5.14)
and the following symmetry emerges:
NZ =55 —Vi-Va+ 5 V45V 4+ XV (5.15)

Hamilton called this object a ‘quaternion’ and gave the name *vector” to the imaginary portion.
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The product v, - v, is equivalent to
byby + cic; 4 dydy (5.16)
and became the scalar or dot product, whilst v; x v, which is equivalent to
i(cydy — dyca) + jldiba — buds) + k(biez — cibs) (5.17)

became the vector or cross product and led to the definitions:

vy - v = vy |]Jvz]| cos@ (5.18)
and
Vi K Va =V (5.19)
where
vi = i(cids — dicy) +}'(d1bz — bydy) + k(byc; — e1ba) (5.20)
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and
[vsll = lvellllvz |l sind (5.21)

where
# is the angle between v, and v,.

Strictly speaking, the i, j and k are unit imaginaries which obey Hamilton’s rules where
it =j2 =k= 1}'&' =-1 (5.22)
ij=k jk=i ki=j ji=-k ki=-i ik=-j. (5.23)

However, when vector algebra became the preferred system over quaternion algebra, the 1, j and
k terms became the Cartesian unit vectors i, j and k.

One very important feature of quaternion algebra is its anticommuting rules. Maintaining
order between the unit imaginaries is vital for the algebra to remain consistent, which is also a
feature of GA.
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_______________________________
Adding quaternion

Two quaternions 4, and gz

q1 =& +ixy + ji + kzy (5.24)
G2 = 8 +ixa + jy2 + kza (5.25)

are equal if, and only if, their corresponding terms are equal. Furthermore, like vectors, they can
be added or subtracted as follows:

g1 gs = [(s1 £ 5) +ilx £x) + jin £ ) + k(z £ 2] (5.26)
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For example, given two quaternions

G=1+i24j3+ka

their sum is given by

G+ =3+i+j8+k2

(5.27)
(5.28)

(5.29)
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The quaternion product

Given two quaternions

G=s+vi=5+ix+jn+ka (5.30)
2 = 5 +V1=5z+lxz+]}"z+kzz (5.31)

their product is given by
s = 5152 — V1 - V2 + 5Va + 52V + V) X V2 (5.32)

which is still a quaternion and ensures closure. However, the quaternion product anticommutes,
which we can prove by computing g,4;:

2y = 5281 — ¥z - V1 + 5V1 + 51¥2 + V2 X VL (5.33)
The pure scalar terms s;5,, v2 - v; and the products s;¥; and s;v, commute, but the cross product

v; % v, anticommutes, therefore q:4: # ga4.
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Por example, given the quaternions

Gi=1+i24j3+ka (5.34)
G=2—i+j5—k2 (5.35)

their product g4, is
qigz = (1 +i2 43 + k) (2 — i + j5 — k2) (5.36)

=[1x2-@2x(-1)+3x5+4x(-2)
+1(—i 475 — k2) 4 2(2 4 j3 + kd)
+i(3 % (=2) — 4 % 5) +j(& x (=1) — (—2) x 2) + k(2 x 5 — (—1) x 3)]
= 3434711+ k6—i26+k13
Q192 = —3 — i23 4 j11 + k19 (5.37)

which is a quaternion.
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Whereas the product g,q, is
Gy = (2 — i + 75 — k2)(1 +i2 4 j3 + kd)
=2-((-1)x2+5x34+(-2)x4)
4202 + j3 + kd) + 1(—i +j5 — k2)
Fi5x4—3x (-2 +7((-2) x2— 4% (1)) + k((—1) x 3 — 2 x 5)]
Gy = —3 + 129 411 — k7 (5.38)

which is also a quaternion, but g1 # giga.
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The magnitude of a quaternion

Given the gquaternion

q=s+ix+jy+kz (5.39)
its magnitude is defined as
gl = v/s* +x* + 2 + 2% (5.40)
For example, given the quaternion
g=1+i24j3+k4 (5.41)
gl = v 12+ 22 + 3% + 4% = +/30. (5.42)
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The unit quaternion

Like vectors, quaternions have a unit form where the magnitude equals unity. For example, the
magnitude of the quaternion

q= 1+i2+j3+k4 (5.43)
is
lgll = ~v'12 422 4 32 4+ 42 = +/30 (5.44)

therefore, the unit quaternion § equals

1
q= E(1+i2 + 73+ k4). (5.45)
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The pure quaternion

Hamilton named a quaternion with a zero scalar term a pure quaternion. For example,

q1=m+1}"l+kzla.ndq2=lxz +j}‘z+k22 [546)

are pure quaternions. Let’s see what happen when we multiply them together:
qugs = (ix1 + jy1 + kzi)(ixz + jyz + kza)
qigz = [—(x1%2 + yiy2 + 21z) + i1z — ypz) 4 j(2ix — 2x) + kixgy — x21)] (5.47)

which is no longer a pure quaternion, as a negative scalar term has emerged. Thus the algebra of
pure quaternions is not closed.
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The conjugate of a quaternion

Given the quaternion

g=s+v

q=s+ix+jy+ke (5.48)
by definition, its conjugate is

F=s—v=s—(ix+jy+kz). (5.49)

For example, the quaternion

g=1+i2+j3+ k4 (5.50)
its conjugate is

F=1—i2—j3— k4. (5.51)
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The inverse quaternion

Given the gquaternion
q=s+ix+jy+kz (5.52)

the inverse quaternion g~ " is

L S—i—jy—kz

Tl =2

q
because this satisfies the product

Wq_&+m+ﬁ+hm—k—ﬂ—h)_

L (5.54)
llqll*
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We can show that this is true by expanding the product as follows:

o1 [$f —isx — jay — ksz + isx + x* — djxy — ikxz + /lall?
9= sy — jiny + y* — jhyz + ksz — kixz — kjyz + 22 ) ' 14
=s1+xz+y1+zz—iﬁcy—ikxz—ﬁxy—jkyz—ki:cz—kﬂz
lall*
2 2 2 2
qq" = M =1 (5.55)

gl
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and confirms that the inverse quaternion g is

i
T =L (5.56)

Because the unit imaginaries do not commute, we need to discover whether

qq_l =q'q. (5.57)
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Expanding this product
o (s —ix — jy — kz)(s + ix + jy + kz)
q 9= 2
ligl
_ (i 4 sy + ksz — isx 4 xF — ey — ikxz— Jllal’?
= Njsy — jixy + y° — jkyz — ksz — kixz — kjyz + 2* 1
S x4yt 2t =y — ikez — jixy — jkyz — kixz — kjyz
llqll*
_| sl+x2+y2+zl
E T
therefore,
9" =4q7'q. (5.58)
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Quaternion algebra

The axioms associated with quaternions are as follows:

Given qs G, g2, g3 € C: (5.59)
Closure
For all g, and g,
addition g +g.€C (5.60)
multiplication g;q, € C. (5.61)
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Identity

For each 4 there is an identity element 0 and 1 such that:

addition g 40 =044 =g (0= 0+i0+j0+ ko) (5.62)
multiplication g(1) = (1)q = g (1 = 1 4+ i0 + jO + k0). (5.63)
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Inverse

For each g there is an inverse element —g and g~ such that:

addition g+ (—q)=—q+qg=10 (5.64)
multiplication gq~' = g7'q =1 (g # 0). (5.65)
Associativity
For all gy, 4: and g5
addition g+ (g2 +4s) = (g1 +g2) + 43 (5.66)
multiplication g1 (4:45) = (1g2)gs. (5.67)
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Commutativity
Forall g; and g,
addition g, +q; =g +q; (5.68)
multiplication 4142 # gag- (5.69)
Distributivity
For all g1, 4, and g»
qulgz + q3) = g2 + qigs (5.70)
(s + 4045 = 4195 + 9293 (5.71)
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Rotating vectors using quaternion

It can be shown that a position vector p can be rotated about an axis i by an angle 8 to p’ using
the following operation:

P =qpq " (5.72)
where
p=xi+yj+:zk (5.73)
p=04+ix+jy+kz (5.74)
q = cos(f/2) 4 sin(9/2)a (5.75)
q_' = cos(f/2) — sin{f/2)a (5.76)
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and the axis of rotation is
0= [xi+pj+zkl (la]=1). (5.77)
This is best demonstrated through an example.
Let the point to be rotated be

P(0,1,1). (5.78)
Let the axis of rotation be
i=j. (5.79)
Let the angle of rotation be
8 = 90°. (5.80)
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Therefore,
p=0+4+i0+j+k (5.81)
q = cos45% 4+ sin45(i0 4+ j + k0)
2
q= %{1+i0+j+k0} (5.82)
q7" = c0s45" — sin45(i0 + j + kO)
2
g = %{1 —i0— j — ko). (5.83)
The rotated point is given by
P =apq’
2 2
=v‘?'_(l+iﬂ+j+kﬂ)(€l+il}+j+k}%(l—il]—j—k[l). (5.84)
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This is best expanded in two steps, and zero imaginary terms are included for clarity.
qp followed by (gp)g—".

Step1

ap = ?(1 + 045+ k0O +i0+j + k)

ap = ?(—1 +it+j+k). (5.85)
Step 2

@p)q~ = ""TE(—I+ i +j+k)?(l —i0—j — ko)

1
=5(1+1+j+itj+k+i=k)

= %(0+ i2 4 j2 + k0)
(gp)q " =0+i+j+ko. (5.86)

The coordinates of the rotated point are stored in the pure part of the quaternion: (1, 1,0).
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