
Math 20
Chapter 5 Eigenvalues and Eigenvectors

1 Eigenvalues and Eigenvectors

1. Definition: A scalar λ is called an eigenvalue of the n × n matrix A is there is a nontrivial solution
x of Ax = λx. Such an x is called an eigenvector corresponding to the eigenvalue λ.

2. What does this mean geometrically? Suppose that A is the standard matrix for a linear transformation
T : Rn → Rn. Then if Ax = λx, it follows that T (x) = λx. This means that if x is an eigenvector of
A, then the image of x under the transformation T is a scalar multiple of x – and the scalar involved
is the corresponding eigenvalue λ. In other words, the image of x is parallel to x.

3. Note that an eigenvector cannot be 0, but an eigenvalue can be 0.

4. Suppose that 0 is an eigenvalue of A. What does that say about A? There must be some nontrivial
vector x for which

Ax = 0x = 0

which implies that A is not invertible which implies a whole lot of things given our Invertible Matrix
Theorem.

5. Invertible Matrix Theorem Again: The n × n matrix A is invertible if and only if 0 is not an
eigenvalue of A.

6. Definition: The eigenspace of the n×n matrix A corresponding to the eigenvalue λ of A is the set of
all eigenvectors of A corresponding to λ.

7. We’re not used to analyzing equations like Ax = λx where the unknown vector x appears on both
sides of the equation. Let’s find an equivalent equation in standard form.

Ax = λx

Ax− λx = 0

Ax− λIx = 0

(A− λI)x = 0

8. Thus x is an eigenvector of A corresponding to the eigenvalue λ if and only if x and λ satisfy (A−λI)x =
0.

9. It follows that the eigenspace of λ is the null space of the matrix A − λI and hence is a subspace of
Rn.

10. Later in Chapter 5, we will find out that it is useful to find a set of linearly independent eigenvectors
for a given matrix. The following theorem provides one way of doing so. See page 307 for a proof of
this theorem.

11. Theorem 2: If v1, . . . , vr are eigenvectors that correspond to distinct eigenvalues λ1, . . . , λr of an
n× n matrix A, then the set {v1, . . . ,vr} is linearly independent.



2 Determinants

1. Recall that if λ is an eigenvalue of the n × n matrix A, then there is a nontrivial solution x to the
equation

Ax = λx

or, equivalently, to the equation
(A− λI)x = 0.

(We call this nontrivial solution x an eigenvector corresponding to λ.)

2. Note that this second equation has a nontrivial solution if and only if the matrix A−λI is not invertible.
Why? If the matrix is not invertible, then it does not have a pivot position in each column (by the
Invertible Matrix Theorem) which implies that the homogeneous system has at least one free variable
which implies that the homogeneous system has a nontrivial solution. Conversely, if the matrix is
invertible, then the only solution is the trivial solution.

3. To find the eigenvalues of A we need a condition on λ that is equivalent to the equation (A−λI)x = 0
having a nontrivial solution. This is where determinants come in.

4. We skipped Chapter 3, which is all about determinants, so here’s a recap of just what we need to know
about them.

5. Formula: The determinant of the 2× 2 matrix A =
[
a b
c d

]
is

detA = ad− bc.

6. Formula: The determinant of the 3× 3 matrix A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 is

detA = a11a22a33 + a12a23a31 + a13a21a32

− a31a22a13 − a32a23a11 − a33a21a12.

See page 191 for a useful way of remembering this formula.

7. Theorem: The determinant of an n× n matrix A is 0 if and only if the matrix A is not invertible.

8. That’s useful! We’re looking for values of λ for which the equation (A − λI)x = 0 has a nontrivial
solution. This happens if and only if the matrix A− λI is not invertible. This happens if and only if
the determinant of A− λI is 0. This leads us to the characteristic equation of A.

3 The Characteristic Equation

1. Theorem: A scalar λ is an eigenvalue of an n×n matrix A if and only if λ satisfies the characteristic
equation

det(A− λI) = 0.

2. It can be shown that if A is an n × n matrix, then det(A − λI) is a polynomial in the variable λ of
degree n. We call this polynomial the characteristic polynomial of A.



3. Example: Consider the matrix A =

3 6 −8
0 0 6
0 0 2

. To find the eigenvalues of A, we must compute

det(A− λI), set this expression equal to 0, and solve for λ. Note that

A− λI =

3 6 −8
0 0 6
0 0 2

−

λ 0 0
0 λ 0
0 0 λ

 =

3− λ 6 −8
0 −λ 6
0 0 2− λ

 .

Since this is a 3× 3 matrix, we can use the formula given above to find its determinant.

det(A− λI) = (3− λ)(−λ)(2− λ) + (6)(6)(0) + (−8)(0)(0)
− (0)(−λ)(−8)− (0)(6)(3− λ)− (−λ)(0)(6)

= −λ(3− λ)(2− λ)

Setting this equal to 0 and solving for λ, we get that λ = 0, 2, or 3. These are the three eigenvalues of
A.

4. Note that A is a triangular matrix. (A triangular matrix has the property that either all of its entries
below the main diagonal are 0 or all of its entries above the main diagonal are 0.) It turned out that
the eigenvalues of A were the entries on the main diagonal of A. This is true for any triangular matrix,
but is generally not true for matrices that are not triangular.

5. Theorem 1: The eigenvalues of a triangular matrix are the entries on its main diagonal.

6. In the above example, the characteristic polynomial turned out to be −λ(λ − 3)(λ − 2). Each of the
factors λ, λ − 3, and λ − 2 appeared precisely once in this factorization. Suppose the characteristic
function had turned out to be −λ(λ− 3)2. In this case, the factor λ− 3 would appear twice and so we
would say that the corresponding eigenvalue, 3, has multiplicity 2.

7. Definition: In general, the multiplicity of an eigenvalue ` is the number of times the factor λ − `
appears in the characteristic polynomial.

4 Finding Eigenvectors

1. Example (Continued): Let us now find the eigenvectors of the matrix A =

3 6 −8
0 0 6
0 0 2

. We have

to take each of its three eigenvalues 0, 2, and 3 in turn.

2. To find the eigenvectors corresponding to the eigenvalue 0, we need to solve the equation (A−λI)x = 0
where λ = 0. That is, we need to solve

(A− λI)x = 0

(A− 0I)x = 0

Ax = 03 6 −8
0 0 6
0 0 2

x = 0

Row reducing the augmented matrix, we find that

x =

x1

x2

x3

 = x2

−2
1
0

 .



This tells us that the eigenvectors corresponding to the eigenvalue 0 are precisely the set of scalar

multiples of the vector

−2
1
0

. In other words, the eigenspace corresponding to the eigenvalue 0 is

Span


−2

1
0

 .

3. To find the eigenvectors corresponding to the eigenvalue 2, we need to solve the equation (A−λI)x = 0
where λ = 2. That is, we need to solve

(A− λI)x = 0

(A− 2I)x = 03 6 −8
0 0 6
0 0 2

−

2 0 0
0 2 0
0 0 2

x = 0

1 6 −8
0 −2 6
0 0 0

x = 0

Row reducing the augmented matrix, we find that

x =

x1

x2

x3

 = x3

−10
3
1

 .

This tells us that the eigenvectors corresponding to the eigenvalue 2 are precisely the set of scalar

multiples of the vector

−10
3
1

. In other words, the eigenspace corresponding to the eigenvalue 2 is

Span


−10

3
1

 .

4. I’ll let you find the eigenvectors corresponding to the eigenvalue 3.

5 Similar Matrices

1. Definition: The n× n matrices A and B are said to be similar if there is an invertible n× n matrix
P such that A = PBP−1.

2. Similar matrices have at least one useful property, as seen in the following theorem. See page 315 for
a proof of this theorem.

3. Theorem 4: If n × n matrices are similar, then they have the same characteristic polynomial and
hence the same eigenvalues (with the same multiplicities).

4. Note that if the n×n matrices A and B are row equivalent, then they are not necessarily similar. For a

simple counterexample, consider the row equivalent matrices A =
[
2 0
0 1

]
and B =

[
1 0
0 1

]
. If these two

matrices were similar, then there would exist an invertible matrix P such that A = PBP−1. Since B
is the identity matrix, this means that A = PIP−1 = PP−1 = I. Since A is not the identity matrix,
we have a contradiction, and so A and B cannot be similar.



5. We can also use Theorem 4 to show that row equivalent matrices are not necessarily similar: Similar
matrices have the same eigenvalues but row equivalent matrices often do not have the same eigenvalues.
(Imagine scaling a row of a triangular matrix. This would change one of the matrix’s diagonal entries
which changes its eigenvalues. Thus we would get a row equivalent matrix with different eigenvalues,
so the two matrices could not be similar by Theorem 4.)

6 Diagonalization

1. Definition: A square matrix A is said to be diagonalizable if it is similar to a diagonal matrix. In
other words, a diagonal matrix A has the property that there exists an invertible matrix P and a
diagonal matrix D such that A = PDP−1.

2. Why is this useful? Suppose you wanted to find A3. If A is diagonalizable, then

A3 = (PDP−1)3 = (PDP−1)(PDP−1)(PDP−1)

= PDP−1PDP−1PDP−1

= PD(PP−1)D(PP−1)DP−1

= PDDDP−1

= PD3P−1.

In general, if A = PDP−1, then Ak = PDkP−1.

3. Why is this useful? Because powers of diagonal matrices are relatively easy to compute. For example,

if D =

7 0 0
0 −2 0
0 0 3

, then

D3 =

73 0 0
0 (−2)3 0
0 0 33

 .

This means that finding Ak involves only two matrix multiplications instead of the k matrix multipli-
cations that would be necessary to multiply A by itself k times.

4. It turns out that an n×n matrix is diagonalizable if and only it has n linearly independent eigenvectors.
That’s what the following theorem says. See page 321 for a proof of this theorem.

5. Theorem 5 (The Diagonalization Theorem):

(a) An n× n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

(b) If v1, v2, . . . , vn are linearly independent eigenvectors of A and λ1, λ2, . . . , λn are their corre-
sponding eigenvalues, then A = PDP−1, where

P =
[
v1 · · · vn

]
and

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 0 · · · λn


(c) If A = PDP−1 and D is a diagonal matrix, then the columns of P must be linearly independent

eigenvectors of A and the diagonal entries of D must be their corresponding eigenvalues.



6. What can we make of this theorem? If we can find n linearly independent eigenvectors for an n × n
matrix A, then we know the matrix is diagonalizable. Furthermore, we can use those eigenvectors and
their corresponding eigenvalues to find the invertible matrix P and diagonal matrix D necessary to
show that A is diagonalizable.

7. Theorem 4 told us that similar matrices have the same eigenvalues (with the same multiplicities). So
if A is similar to a diagonal matrix D (that is, if A is diagonalizable), then the eigenvalues of D must
be the eigenvalues of A. Since D is a diagonal matrix (and hence triangular), the eigenvalues of D
must lie on its main diagonal. Since these are the eigenvalues of A as well, the eigenvalues of A must
be the entries on the main diagonal of D. This confirms that the choice of D given in the theorem
makes sense.

8. See your class notes or Example 3 on page 321 for examples of the Diagonalization Theorem in action.


