THE GEOMETRIC PRODUCT
(CH. 8)

Aljabar Geometri (IF2123)

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung



Clifford’s definition of the geometric product

(a-bye a-(bxec) (axbyxc axbxo) (8.1)

which are easy to interpret and visualize. On the other hand, GA employs a new product called
the geometric product, which operates upon multivectors containing scalars, vectors, areas and
volumes. Visualizing these products can be difficult. For example, how should we visualize the

Clifford defined the geometric product of two vectors a and b as

ab=a-b4+anhk (8.2)

which is the sum of a scalar and a bivector. Now there is always a good reason why such definitions
are made, and it is far from arbitrary. In order to develop this new product we start by defining

the axioms associated with the algebra. These comprise an associative axiom, distributive axiom,
and a definition of a modulus.
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Associative axiom
a(bc) = (ab)c = abc (8.3)
(ha)b = A(ab) = hab [A = E] (8.4)
Distributive axiom
alb +¢) = ab 4+ ac (8.5)
and
(b4 c)a = ba + ca. (8.6)
Modulus
a* = %|a|*. (8.7)

From these axioms we can derive the meaning of the product ab. Just in case the product is
antisymmetric, we pay particular attention to the order of vectors.
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We begin with two vectors a and b and represent their sum as

c=a+b. (8.8)
Therefore,
ct = (a4 b)? (8.9)
and
¢t =a® + b + ab + ba. (8.10)

To simplify this relationship we investigate how Eq. (8.10) behaves when vectors a and b are
orthogonal, linearly dependent and linearly independent.
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Orthogonal vectors

b
]
a
Figure 8.1
With reference to Fig. 8.1, when
bla

then

llel? = Nlall* + b1 (8.11)
Invoking the modulus axiom, we have

A =at+ b (8.12)

which implies that in Eq. (8.10)
b b = () hal. f&/14y



Linearly dependent vectors

With reference to Fig. 8.2, when
blla and b=Jla where
ab = aia = haa = ba
which confirms that linearly dependent vectors commute.

¢

[+ K]

Figure 8.2.
Invoking the modulus axiom we have
haa = ia* = aal?

which is a scalar.

N

(8.15)
(8.16)

(8.17)
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Linearly independent vectors

lall#]sine

Figure 8.3.

‘With reference to Fig. 8.3
b=by+b,. (8.18)
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Therefore, we can write

ab = ﬂﬁ)” + bJ_) (319)

ab = ﬂb” + ﬂbJ_L (320)

Let’s examine the RHS products of Eq. (8.20):
aby: As a and by are linearly dependent, ab is a scalar. Furthermore,

aby = |la||||b]| cosf =a - b (8.21)

which is defined as the inner product, or the inner product, and is symmetric.
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ab,: Asa and b, are orthogonal
ab, = |la||||b||sin@ =aAb (8.22)
which is defined as the outer product and is antisymmetric; Le.
anb=-=bara. (8.23)

The area of the parallelogram formed by a and b in Fig. 8.20 is

lalllb|l siné. (8.24)
Therefore,
lla A bll = [lalllib] siné (8.25)
which enables us to write Eq. (8.20) as
ab=a-b4+anhb. (8.26)
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The parallel and orthogonal components created by a - b and a A b describe everything about the
vectors @ and b, which is why Clifford combined them into his geometric product. Furthermore,

because these product components are linearly independent, the modulus of ab is computed using
the Pythagorean rule:

lab|l* = [la- bI* + lla A b|*

llabll? = llall*[[BII* cos® @ + llall*[1b]? sin® &
llab]I? = llall*[[bl|*(cos® @ + sin’ B) (827)
llabll = lallibl. (8.28)
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Now we already know that a - b is a pure scalar and a A b is a directed area, which we suspect has
an imaginary flavor. So it may seem strange adding two different mathematical objects together,
but no stranger than a complex number. Nevertheless, we still require a name for this new object,
which is a multivector and is described in section 8.5.

If we reverse the product to ba we have

ba=b-a+bra=a-b—anb. (8.29)

Note how the antisymmetry of the outer product introduces the negative sign.

Knowing that the geometric product is the sum of the inner and outer products, it is possible
to define the inner and outer products in terms of the geometric product as follows.

Subtracting Eq. (8.29) from Eq. (8.26) we obtain

ab—ba=(a-b+anb)—(a-b—arb)y=2anrh) (8.30)

therefore,
anh= %(ab — ba). (8.31)
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Similarly, adding Eq. (8.29) to Eq. (8.26) we obtain
ab+ba=2a-b (8.32)

therefore,
a-b= %(ab + ba). (8.33)

These are important relationships and will be called upon frequently.
Now let’s explore the geometric product further using the unit basis vectors for B2,
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The product of identical basis vectors

Before we begin exploring this product, itis worth introducing a shorthand notation that simplifies
our equations. Very often we have to write down a string of basis vectors such as e e;e; which can
also be written as e;s;, and saves space on the printed page. In general this is expressed as:
€iLiCr = Chi. (334)
So let’s start with the product e, e;:
€8 = ¢, -e; + e Nep (8.35)
Now we already know that e; A ¢, = 0 and e, - ¢; = 1, which means that
e =¢ =1 (8.36)
Similarly,
e =1 (8.37)
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The product of orthogonal basis vectors

Next, the product ee;:
€18y =€ - €+ € A e (8.38)

Again, we know that e, - ¢; = 0, which means that
8183 = €] A €. (8.39)

So, whenever we find the unit bivector e; A e; we can substitute e;e; or €;,.
Now let’s compute the product eye;:

e =e3-e;pF e e =e;-e —e Mes (8.40)

But ¢; - ¢; = 0, therefore,
€18 = —€; A€ = —e1. (8.41)
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The imaginary properties of the outer product

The imaginary properties of the outer product are revealed by evaluating the product (e, » e,)*:

(1 Aea) = (&1 Aexd(er Aer) = erezees (8.42)
But as
€6 = —€18 (8.43)
then
(e1 Aer) = —ejereze, = —elen. (8.44)
But as
ef = ei =1 (8.45)
then
(Cl M Cz)z = =1 {8.46)

So the unit bivector possess the same qualities as imaginary i in that it squares to —1.

Now this has all sorts of ramifications as it suggests that GA is related to complex numbers and
possibly, quaternions, and could perform rotations in n-dimensions. At this point, the algebra
explodes into many paths, which will have to be explored in turn.
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