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Learning Objectives

Upon completing this module, you should be able to:

1. Solve the eigenvalue problem by finding the eigenvalues 
and the corresponding eigenvectors of an n x n matrix. 
Find the algebraic multiplicity and the geometric 
multiplicity of an eigenvalue.

2. Find a basis for each eigenspace of an eigenvalue.

3. Determine whether a matrix A is diagonalizable.

4. Find a matrix P, P-1, and D that diagonalize A if A is 
diagonalizable.

5. Find an orthogonal matrix P with P-1 = PT and D that 
diagonalize A if A is symmetric and diagonalizable.

6. Determine the power and the eigenvalues of a matrix, Ak.
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Eigenvalues, Eigenvectors, Eigenspace,

Diagonalization and Orthogonal Diagonalization

The major topics in this module:
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If A is an n x n matrix and λ is a scalar for which Ax = λx has  

a nontrivial solution x ∈ ℜⁿ, then λ is an eigenvalue of A and 

x is a corresponding eigenvector of A. Ax = λx is called the 

eigenvalue problem for A.

Note that we can rewrite the equation Ax = λx = λIn x as 

follows:

λIn x - Ax = 0 or  (λIn - A)x = 0. x = 0 is the trivial solution.   

But our solutions must be nonzero vectors called 

eigenvectors that correspond to each of the distinct 

eigenvalues.
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Since we seek a nontrivial solution to (λIn - A)x = (λI - A)x = 0, 

λI - A must be singular to have solutions x ≠ 0.  This means 

that the det(λI - A) = 0. 

The det(λI - A) = p(λ)  = 0 is the characteristic equation, where 

det(λI - A) = p(λ) is the characteristic polynomial. The 

deg(p(λ)) = n and the n roots of p(λ), λ1, λ2, …,λn, are the 

eigenvalues of A.  The polynomial p(λ) always has n roots, 

so the zeros always exist; but some may be complex and 

some may be repeated.  In our examples, all of the roots 

will be real.

For each λi we solve for xi = pi the corresponding eigenvector, 

and Api =  λi pi for each distinct eigenvalue.
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Example 1: Find the eigenvalues and the corresponding 

eigenvectors of A.

Step 1: Find the characteristic equation of A and solve for its 

eigenvalues.

Each eigenvalue has algebraic multiplicity 1.  

A 
3 2

5 0











p()  I  A 
  3 2

5 
 0

 (  3)  (2)(5)  2  3 10  (  5)1(  2)1  0

Thus, the eigenvalues are 1  5, 2  2.

Let D 
1 0

0 2
















5 0

0 2









 which is a diagonal matrix.
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Step 2: Use Gaussian elimination with back-substitution to 

solve the (λI - A) x = 0 for λ1 and λ2.

The augmented matrix for the system with λ1 = -5:  

The second column is not a leading column, so x2 =  t is a 

free variable, and x1 = x2 = t.  Thus, the solution 

corresponding to λ1 = -5 is 

5I  A |
r
0  

2 2

5 5

0

0











~
 1

2
r1 r1

r2

1 1

5 5

0

0









 :

r1

5r1 r2  r2

1 1

0 0

0

0









.

x 
x1

x2
















t

t









  t

1

1









,t  0.
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Since t is a free variable, there are infinitely many 

eigenvectors.  For convenience, we choose t = 1, and 

as the eigenvector for λ1 = -5. If we want p1 to be a unit 

vector, we will choose t so that

However, t =1 is fine in this

problem.

The augmented matrix for the system with λ2 = 2:

x 
r
p1 

1

1











2I  A |
r
0  

5 2

5 2

0

0











:
1

5
r1 r1

r2

1 2

5

5 2

0

0















:
r1

5r1 r2 r2

1 2

5

0 0

0

0














.

p1 
1 / 2

1 / 2














.
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Again, the second column is not a leading column, so x2 =  t is 

a free variable, and x1 = - 2x2 / 5 = - 2t / 5.  Thus, the 

solution corresponding to λ1 = 2 is 

For convenience, we choose t = 5 and 

as the eigenvector for λ1 = 2.  Alright, we have finished solving 

the eigenvalue problem for

x 
x1

x2
















 2

5
t

t














 t

 2

5

1














,t  0.

x 
r
p2 

2

5











A 
3 2

5 0









.
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For each eigenvalue λ, there is an eigenspace Eλ with a basis 

formed from the linearly independent eigenvectors for λ. The 

dim(Eλ) is the geometric multiplicity of λ, which is the number of 

linearly independent eigenvectors associated with λ. We will 

see that the geometric multiplicity equals the algebraic 

multiplicity for each eigenvalue. 

B1  {
r
p1} is a basis for E1

, the eigenspace of 1,

and B2  {
r
p2} is a basis for E2

, the eigenspace of 2 .

So, E1
 span(B1)  span({

r
p1})  span 1 1





T





,

E2
 span(B2 )  span({

r
p2})  span 2 5





T 
and dim(E1

)  dim(E2
)  1.
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If P = [ p1 p2 ], then AP = PD even if A is not diagonalizable. 

Since AP 
1 2

1 5











3 2

5 0









  A

r
p1

r
p2






 A

r
p1 A

r
p2








5 4

5 10









 

5(1) 2(2)

5(1) 2(5)














 5

1

1









 2

2

5

























 1

r
p1 2

r
p2








r
p1

r
p2







1 0

0 2
















1

1











2

5

























5 0

0 2









 

1 2

1 5











5 0

0 2









  PD.
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So, our two distinct eigenvalues both have algebraic multiplicity 

1 and geometric multiplicity 1. This ensures that p1 and p2

are not scalar multiples of each other; thus, p1 and p2 are 

linearly independent eigenvectors of A.  

Since A is 2 x 2 and there are two linearly independent 

eigenvectors from the solution of the eigenvalue problem, A 

is diagonalizable and P-1AP = D. 

We can now construct P, P-1 and D. Let 

Then, P1 
5 / 7 2 / 7

1 / 7 1 / 7









 and D 

1 0

0 2
















5 0

0 2









.

P 
r
p1

r
p2








1

1











2

5


























1 2

1 5









.
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Note that, if we multiply both sides on the left by P1, then

AP  A
r
p1

r
p2






 A

r
p1 A

r
p2








5 4

5 10









 

5(1) 2(2)

5(1) 2(5)















 5
1

1









 2

2

5
























 1

r
p1 2

r
p2








r
p1

r
p2







1 0

0 2
















1

1











2

5

























5 0

0 2









 

1 2

1 5











5 0

0 2









  PD becomes

P1AP 
5 / 7 2 / 7

1 / 7 1 / 7











1 2

1 5











3 2

5 0












5 / 7 2 / 7

1 / 7 1 / 7











5 4

5 10









 

35 / 7 0 / 7

0 / 7 14 / 7









 

5 0

0 2









  D.
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Example 2: Find the eigenvalues and eigenvectors for A.

Step 1: Find the eigenvalues for A.

Recall:  The determinant of a triangular matrix is the product of 

the elements at the diagonal.  Thus, the characteristic 

equation of A is

λ1 = 1 has algebraic multiplicity 1 and λ2 = 3 has algebraic 

multiplicity 2.

.

A 

3 4 0

0 3 0

0 0 1

















p()  det(I  A)  I  A  0



  3 4 0

0   3 0

0 0  1

 (  3)2 ( 1)1  0.
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Step 2: Use Gaussian elimination with back-substitution to 

solve (λI - A) x = 0. For λ1 = 1, the augmented matrix for the 

system is

Column 3 is not a leading column and x3 = t is a free variable. 

The geometric multiplicity of λ1 = 1 is one, since there is only 

one free variable. x2 = 0 and x1 = 2x2 = 0. 

I  A |
r
0  

2 4 0

0 2 0

0 0 0

0

0

0

















:

 1

2
r1 r1

r2

r3

1 2 0

0 2 0

0 0 0

0

0

0

















:

r1

 1

2
r2  r2

r3

1 2 0

0 1 0

0 0 0

0

0

0

















.
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The eigenvector corresponding to λ1 = 1 is

The dimension of the eigenspace is 1 because the eigenvalue 

has only one linearly independent eigenvector.  Thus, the 

geometric multiplicity is 1 and the algebraic multiplicity is 1 

for λ1 = 1 .  

x 

x1

x2

x3





















0

0

t

















 t

0

0

1

















. If we choose t  1, then
r
p1 

0

0

1

















is

our choice for the eigenvector.

B1  {
r
p1} is a basis for the eigenspace, E

1

, with dim(E
1

)  1.
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The augmented matrix for the system with λ2 = 3 is

Column 1 is not a leading column and x1 = t is a free variable. 

Since there is only one free variable, the geometric 

multiplicity of λ2 is one.

3I  A |
r
0  

0 4 0

0 0 0

0 0 2

0

0

0

















:

1

4
r1 r1

r2

r3

0 1 0

0 0 0

0 0 2

0

0

0

















:

r1

r3 r2

r2 r3

0 1 0

0 0 2

0 0 0

0

0

0

















:

r1
1

2
r2 r2

r3

0 1 0

0 0 1

0 0 0

0

0

0

















.
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x2 = x3 = 0 and the eigenvector corresponding to λ2 = 3 is

The dimension of the eigenspace is 1 because the eigenvalue 

has only one linearly independent eigenvector.  Thus, the 

geometric multiplicity is 1 while the algebraic multiplicity is 2 

for λ2 = 3 .  This means there will not be enough linearly 

independent eigenvectors for A to be diagonalizable.  Thus, A 

is not diagonalizable whenever the geometric multiplicity is 

less than the algebraic multiplicity for any eigenvalue.

x 

x1

x2

x3





















t

0

0

















 t

1

0

0

















,we choose t  1, and
r
p2 

1

0

0

















is

our choice for the eigenvector.

B2  {
r
p2} is a basis for the eigenspace, E

2

, with dim(E
2

)  1.
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This time, AP  A
r
p1

r
p2

r
p2






 A

r
p1 A

r
p2 A

r
p2







1

r
p1 2

r
p2 2

r
p2








r
p1

r
p2

r
p2







1 0 0

0 2 0

0 0 2
















 PD.

P1 does not exist since the columns of P are not linearly independent.

It is not possible to solve for D  P1AP, so A is not diagonalizable.
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AP  A
r
p1

r
p2 ...

r
pn






 A

r
p1 A

r
p2 ... A

r
pn







 1

r
p1 2

r
p2 ... n

r
pn







 PD 
r
p1

r
p2 ...

r
pn







1 0
O

0 n



















For A, an n x n matrix, with characteristic polynomial roots

for eigenvalues λi of A with corresponding eigenvectors pi.  

P is invertible iff the eigenvectors that form its columns are 

linearly independent iff

1,2,...,n, then

a lgbraic multiplicity for each distinct i .

dim(Ei
)  geometric multiplicity 
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P1AP  P1PD  D 

1 0
O

0 n



















.

This gives us n linearly independent eigenvectors for P, so

P-1 exists. Therefore, A is diagonalizable since 

The square matrices S and T are similar iff there exists a 

nonsingular P such that S = P-1TP or PSP-1 = T.

Since A is similar to a diagonal matrix, A is diagonalizable.
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Example 4: Solve the eigenvalue problem Ax = λx and find 

the eigenspace, algebraic multiplicity, and geometric 

multiplicity for each eigenvalue.

Step 1: Write down the characteristic equation of A and solve 

for its eigenvalues.  

A 

4 3 6

0 1 0

3 3 5

















p()  I  A 

  4 3 6

0  1 0

3 3   5

 (1)( 1)
  4 6

3   5
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Since the factor (λ - 2) is first power, λ1 = 2  is not a repeated 

root. λ1 = 2 has an algebraic multiplicity of 1. On the other 

hand, the factor (λ +1) is squared, λ2 = -1 is a repeated root, 

and it has an algebraic multiplicity of 2.

p()

 ( 1)(  4)(  5)18( 1)  0

 (2  5  4)(  5)18( 1)  0

 (3  52  4  52  25  20)18 18  0

  3  3  2  ( 1)(2    2)  ( 1)(  2)( 1)  0

 (  2)( 1)2  0.

So the eigenvalues are 1  2,2  1.
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Step 2: Use Gaussian elimination with back-substitution to 

solve (λI - A) x = 0 for λ1 and λ2.

For λ1 = 2 , the augmented matrix for the system is 

2I  A |
r
0  

6

0

3

3

3

3

6

0

3

0

0

0

















~

1

6
r1 r1

1

3
r2 r2

r3

1

0

3

1 / 2

1

3

1

0

3

0

0

0

















~

r1

r2

3r1 r3 r3

1

0

0

1 / 2

1

3 / 2

1

0

0

0

0

0

















:

r1

r2

 3

2
r2  r3 r3

1

0

0

1 / 2

1

0

1

0

0

0

0

0

















.

In this case, 

x3 = r, x2 = 0, and

x1 = -1/2(0)  + r 

= 0 + r = r. 
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Thus, the eigenvector corresponding to λ1 = 2 is 

x 

x1

x2

x3


















r

0

r

















 r

1

0

1

















,r  0. If we choose
r
p1 

1

0

1

















,

then B1 

1

0

1

































is a basis for the eigenspace of 1  2.

E1
 span({

r
p1}) and dim(E1

)  1, so the geometric multiplicity is 1.

A
r
x  2

r
x or (2I  A)

r
x 

r
0.

4 3 6

0 1 0

3 3 5

















1

0

1



















4  6

0

3 5



















2

0

2

















 2

1

0

1

















.
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For λ2 = -1, the augmented matrix for the system is

(1)I  A |
r
0  

3

0

3

3

0

3

6

0

6

0

0

0

















~

1

3
r1 r1

r2

r3

1

0

3

1

0

3

2

0

6

0

0

0

















~

r1

r2

3r1 r3 r3

1

0

0

1

0

0

2

0

0

0

0

0

















x3 = t, x2 = s, and x1 = -s  + 2t. Thus, the solution has two 

linearly independent eigenvectors for λ2 = -1 with  

x 

x1

x2

x3


















s  2t

s

t

















 s

1

1

0

















 t

2

0

1

















, s  0,t  0.
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If we choose
r
p2 

1

1

0

















, and
r
p3 

2

0

1

















, then B2 

1

1

0

















,

2

0

1

































is a basis for E2
 span({

r
p2 ,

r
p3}) and dim(E2

)  2,

so the geometric multiplicity is 2.
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Thus, we have AP  PD as follows :

4 3 6

0 1 0

3 3 5

















1 1 2

0 1 0

1 0 1



















1 1 2

0 1 0

1 0 1

















2 0 0

0 1 0

0 0 1

















2 1 2

0 1 0

2 0 1



















2 1 2

0 1 0

2 0 1

















.

Since the geometric multiplicity is equal to the algebraic 

multiplicity for each distinct eigenvalue, we found three 

linearly independent eigenvectors. The matrix A is 

diagonalizable since P = [p1 p2 p3] is nonsingular. 
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P | I 
1 1 2

0 1 0

1 0 1

1 0 0

0 1 0

0 0 1

















:

1 1 2

0 1 0

0 1 1

1 0 0

0 1 0

1 0 1

















:

1 0 2

0 1 0

0 0 1

1 1 0

0 1 0

1 1 1

















:

1 0 0

0 1 0

0 0 1

1 1 2

0 1 0

1 1 1

















. So, P1 

1 1 2

0 1 0

1 1 1

















.

We can find P-1 as follows:
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AP  PD gives us A  APP1  PDP1.

Thus, PDP1 

1 1 2

0 1 0

1 0 1

















2 0 0

0 1 0

0 0 1

















1 1 2

0 1 0

1 1 1



















2 1 2

0 1 0

2 0 1

















1 1 2

0 1 0

1 1 1



















4 3 6

0 1 0

3 3 5

















 A

Note that A and D are similar matrices.
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D 

1 1 2

0 1 0

1 1 1

















4 3 6

0 1 0

3 3 5

















1 1 2

0 1 0

1 0 1



















2 2 4

0 1 0

1 1 1

















1 1 2

0 1 0

1 0 1



















2 0 0

0 1 0

0 0 1

















.

Also, D =  P-1 AP =

So, A and D are similar with D =   P-1 AP  and A = PD P-1 .
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If P is an orthogonal matrix, its inverse is its transpose, P-1 =

PT .  Since 

PT P 

r
p1

T

r
p2

T

r
pT

3



















r
p1

r
p2

r
p3








r
p1

T r
p1

r
p1

T r
p2

r
p1

T r
p3

r
pT

2

r
p1

r
p2

T r
p2

r
p2

T r
p3

r
p3

T r
p1

r
p3

T r
p2

r
pT

3

r
p3





















r
p1 

r
p1

r
p1 

r
p2

r
p1 

r
p3

r
p2 

r
p1

r
p2 

r
p2

r
p2 

r
p3

r
p3 

r
p1

r
p3 

r
p2

r
p3 

r
p3


















r
pi 

r
p j

   I because
r
pi 

r
p j  0

for i  j and
r
pi 

r
p j  1 for i  j  1,2,3. So, P1  PT .
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A is a symmetric matrix if A = AT.  Let A be diagonalizable so 

that A = PDP-1.  But A = AT and 

AT  (PDP1)T  (PDPT )T  (PT )T DT PT  PDPT  A.

This shows that for a symmetric matrix A to be 

diagonalizable, P must be orthogonal. 

If P-1 ≠ PT, then A ≠AT.  The eigenvectors of A are mutually 

orthogonal but not orthonormal. This means that the 

eigenvectors must be scaled to unit vectors so that P is 

orthogonal and composed of orthonormal columns.
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Example 5: Determine if the symmetric matrix A is 

diagonalizable; if it is, then find the orthogonal matrix P that  

orthogonally diagonalizes the symmetric matrix A. 

Let A 

5 1 0

1 5 0

0 0 2

















, then det(I  A) 

  5 1 0

1   5 0

0 0   2

 (1)31(  2)
  5 1

1   5
 (  2)(  5)2  (  2)

  3  82  4  48  (  4)(2  4 12)  (  4)(  2)(  6)  0

Thus, 1  4, 2  2, 3  6.

Since we have three distinct eigenvalues, we will see that we are 

guaranteed to have three linearly independent eigenvectors.  
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Since λ1 = 4, λ2 = -2, and λ3 = 6, are distinct eigenvalues, each 

of the eigenvalues has algebraic multiplicity 1. 

An eigenvalue must have geometric multiplicity of at least one.  

Otherwise, we will have the trivial solution. Thus, we have three 

linearly independent eigenvectors. 

We will use Gaussian elimination with back-substitution as 

follows:
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For 1  4 ,

1I  A
r
0



 

1 1 0

1 1 0

0 0 6

0

0

0

















:

1 1 0

0 0 0

0 0 1

0

0

0

















:

1 1 0

0 0 1

0 0 0

0

0

0

















x2  s, x3  0, x1  s .

r
x 

x1

x2

x3
















 s

1

1

0

















or
r
p1 

1 / 2

1 / 2

0

















.
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For 2  2 ,

2I  A
r
0



 

7 1 0

1 7 0

0 0 0

0

0

0

















:

1 7 0

0 1 0

0 0 0

0

0

0

















x3  s, x2  0, x1  0 .

r
x 

x1

x2

x3
















 s

0

0

1

















or
r
p2 

0

0

1

















.
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For 3  6,

3I  A
r
0



 

1 1 0

1 1 0

0 0 8

0

0

0

















:

1 1 0

0 0 1

0 0 0

0

0

0

















x2  s, x3  0, x1  s.

r
x 

x1

x2

x3
















 s

1

1

0

















or
r
p3 

1 / 2

1 / 2

0

















.
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As we can see the eigenvectors of A are distinct, so {p1, p2, 

p3} is linearly independent, P-1 exists for P =[p1 p2 p3] and 

Thus A is diagonalizable.

Since A = AT (A is a symmetric matrix) and P is orthogonal with 

approximate scaling of p1, p2, p3,  P
-1 = PT.

AP  PD  PDP1.

PP1  PPT 

1 / 2 0 1 / 2

1 / 2 0 1 / 2

0 1 0

















1 / 2 1 / 2 0

0 0 1

1 / 2 1 / 2 0



















1 0 0

0 1 0

0 0 1

















 I .
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As we can see the eigenvectors of A are distinct, so {p1, p2, 

p3} is linearly independent, P-1 exists for P =[p1 p2 p3] and 

Thus A is diagonalizable.

Since A = AT (A is a symmetric matrix) and P is orthogonal with 

approximate scaling of p1, p2, p3,  P
-1 = PT.

AP  PD  PDP1.

PP1  PPT 

1 / 2 0 1 / 2

1 / 2 0 1 / 2

0 1 0

















1 / 2 1 / 2 0

0 0 1

1 / 2 1 / 2 0



















1 0 0

0 1 0

0 0 1

















 I .
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PDPT 

1 / 2 0 1 / 2

1 / 2 0 1 / 2

0 1 0

















4 0 0

0 2 0

0 0 6

















1 / 2 1 / 2 0

0 0 1

1 / 2 1 / 2 0



















4 / 2 0 6 / 2

4 / 2 0 6 / 2

0 2 0

















1 / 2 1 / 2 0

0 0 1

1 / 2 1 / 2 0



















5 1 0

1 5 0

0 0 2

















 A.

Note that A and D are similar matrices. PD P-1 = 
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

1 / 2 1 / 2 0

0 0 1

1 / 2 1 / 2 0

















5 1 0

1 5 0

0 0 2

















1 / 2 0 1 / 2

1 / 2 0 1 / 2

0 1 0



















4 / 2 4 / 2 0

0 0 2

6 / 2 6 / 2 0

















1 / 2 0 1 / 2

1 / 2 0 1 / 2

0 1 0



















4 0 0

0 2 0

0 0 6

















.

Also, D =  P-1 AP = PTAP

So, A and D are similar with D =  PTAP  and A = PDPT . 
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

1 / 2 0 1 / 2

1 / 2 0 1 / 2

0 1 0

















4 0 0

0 2 0

0 0 6

















T

1 / 2 0 1 / 2

1 / 2 0 1 / 2

0 1 0

















T



1 / 2 0 1 / 2

1 / 2 0 1 / 2

0 1 0

















4 0 0

0 2 0

0 0 6

















1 / 2 1 / 2 0

0 0 1

1 / 2 1 / 2 0



















4 / 2 0 6 / 2

4 / 2 0 6 / 2

0 2 0

















1 / 2 1 / 2 0

0 0 1

1 / 2 1 / 2 0



















5 1 0

1 5 0

0 0 2

















AT = (PD P-1)T = (PD PT )T = (PT)T DT PT = P DT PT

= A. This shows that if A is a symmetric matrix, P must be 

orthogonal with P-1 = PT.  
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From Example 1, the diagonal matrix for matrix A is :

D 
1 0

0 2
















5 0

0 2









  P1AP  D  A  PDP1,

and A3  PDP1PDP1PDP1  PD3P1


1 2

1 5











(5)3 0

0 (2)3















5 / 7 2 / 7

1 / 7 1 / 7









 

125 16

125 40











5 / 7 2 / 7

1 / 7 1 / 7












641 / 7 234 / 7

585 / 7 290 / 7









. For A3,the eigenvalues, are 1

3  125 aand 2

3  8.

In general, the power of a matrix, Ak  PDkP1. and the eigenvalues are i

k ,

where i is on the main diagonal of D.
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What have we learned?

We have learned to:

1. Solve the eigenvalue problem by finding the eigenvalues 

and the corresponding eigenvectors of an n x n matrix. 

Find the algebraic multiplicity and the geometric multiplicity 

of an eigenvalue.

2. Find a basis for each eigenspace of an eigenvalue.

3. Determine whether a matrix A is diagonalizable.

4. Find a matrix P, P-1, and D that diagonalize A if A is 

diagonalizable.

5. Find an orthogonal matrix P with P-1 = PT and D that 

diagonalize A if A is symmetric and diagonalizable.

6. Determine the power and the eigenvalues of a matrix, Ak.
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Credit

Some of these slides have been adapted/modified in part/whole from the 

following textbook:

• Anton, Howard: Elementary Linear Algebra with Applications, 9th Edition 
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