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Some Notation

We index the symbols in a string starting at 0
For any string s, let s denote the length of s

For any string s and integer i such that 0 < ¢ < 3, let s[i] denote the
symbol of s with index i

For any string s and integers 2 and j suchthat 0 <7 <sand: < j <5,
sli..j] denotes the (possibly empty) substring of s starting at index ¢
and ending just before j

— 5[2..4] is the two-symbol string s[2]s|3]
— 5[2..2] is the empty string

- 5[0..5] = s
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The (Exact) String Matching Problem

e Given a text string t and a pattern string p, find all occurrences of p in
t
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Three Efficient String Matching Algorithms

e Rabin-Karp

— This is a simple randomized algorithm that tends to run in linear
time in most scenarios of practical interest

— The worst case running time is as bad as that of the naive algorithm,
ie., O(p-t)
e Knuth-Morris-Pratt (this lecture and the next)

— The worst case running time of this algorithm is linear, i.e., O(p+1)

e Boyer-Moore

— This algorithm tends to have the best performance in practice, as it
often runs in sublinear time

— The worst case running time is as bad as that of the naive algorithm
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The KMP String Matching Algorithm: Plan

We maintain two indices, ¢ and r, into the text string

We iteratively update these indices and detect matches such that the
following loop invariant is maintained

— KMP Invariant: ¢ < r, t[f..r] = p|0..r — ¢}, and all occurrences of
the pattern p starting prior to £ in the text ¢ have been detected

We ensure that the invariant holds initially by setting £ and r to zero

Remark: We will see later that the algorithm also requires a
preprocessing phase involving only the pattern string p
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Achieving Linear Time Complexity: The Plan

The algorithm performs only a constant amount of computation in
each iteration

The algorithm never decreases ¢ or r
In each iteration, either ¢ or r is increased
Note that the indices ¢ and r are at most ¢

By the KMP invariant, all matches have been detected once ¢ reaches
t, so we can terminate at that point

The preprocessing phase, which involves only p, runs in O(p) time
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KMP lteration

Let's see how to define an iteration of the KMP loop

Assume the KMP invariant holds at the beginning of the iteration
Since the loop has not terminated, ¢ < ¢

We'd like to increase ¢ or r, while maintaining the invariant

There are two cases to consider

— Case 1: 0 <r—£ < p, i.e., we do not yet know whether there is a
match starting at index /

— Case 2: r — £ =P, i.e., we have found a match starting at index /¢
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Case 1: 0<r—/4<Dp

o Case 1.1: t[r] = p[r — /]
— We've matched another symbol; increment r

e Case 1.2: r =/{ and t[r] # p|r — (]

— Our current match is the empty string and the next symbol does not
match p[0]; increment ¢ and r

e Case 1.3: r > ( and t|r| # p[r — ¢|

— Our current match is a nonempty proper prefix of p and the next
symbol does not extend this match

— How should we update £ and r in this remaining subcase?
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Case 1.3: 0<r—/4<p, r>¥ and t|r] # plr — (]

Our current match w is a nonempty proper prefix of p and the next
symbol does not extend this match
We cannot set £ to r because we might skip over one or more matches

— Example: Suppose p is axbcyaxbts and we've already matched
axbcyaxb, but the next symbol is not t

— In this example, we advance ¢ by 5

In general, we advance ¢ by the smallest £ > 0 such that the suffix
v = ulk..u] of u is a prefix of p

Note that v is simply the longest string that is both a proper prefix and
a proper suffix of u

— This string is called the core of u, denoted c(u)

— Later we will discuss how the KMP algorithm computes such cores
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Case 2: r— V=D

We output that a match exists starting at index ¢

How do we update ¢ and r?

Note that this case is very similar to Case 1.3 treated earlier

We increase ¢ by p — ¢(p)
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Core Computation

e |t remains only to describe how the KMP algorithm computes the cores
required in Cases 1.3 and 2

e Recall that each iteration of KMP is supposed to run in a constant
number of operations

e How can we hope to compute the core of a string in constant time?
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KMP Core Computation: A Key Observation

e Note that in Case 1.3 we need to compute the core of some proper
prefix of p, while in Case 2 we need to compute the core of p

e Thus, if we precompute the core of every prefix of p, we will be able to
execute each iteration of the KMP loop in constant time

e |t remains to prove that we can compute the core of every prefix of p
in O(p) time
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Some Properties of Core

Let u < v mean that u is both a prefix and a suffix of v
— For any string u, e < u

— The < relation is a partial order
Let © < v denote u < v and u # v

The core c(v) of a string v is the unique string such that for all strings

u
u=clv)=u=<wv

— It follows, by replacing u with ¢(v), that ¢(v) < v and hence c¢(v) < ¥

Let c°(u) denote u and for any 7 > 0 such that c'(v) is a nonempty
string, let ¢'!(u) denote c(c*(u))
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A Key Property

e Claim: Foranyuand v, u <v = (Fi:0<1i:u=c(v))
e The proof is by induction on the length of v

e Base case (v =0):

U <0

{v=0,ie,v=c¢}
u=€¢ N v=c¢

{definition of ’: v =€ = c'(v) is defined for i = 0 only}
(Fi:0<i:u=c"(v))
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Induction Step: v=n+1,n >0

u=<v
{definition of <}
u=v V u=<v
{definition of core}
u=uv V u=c)
{c(v) < T; induction hypothesis on second term}
u=v V (Fi:0<i:u=c"(c(v)))
{rewrite}
u=cW) V (Fi:0<i:u=c"(v))
{rewrite}
(Fi:0<i:u=c'(v))
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