String Matching: Knuth-Morris-Pratt
Algorithm

Greg Plaxton
Theory in Programming Practice, Spring 2004
Department of Computer Science
University of Texas at Austin

Some Notation

We index the symbols in a string starting at 0
For any string s, let s denote the length of s

For any string s and integer i such that 0 < ¢ < 3, let s[i] denote the
symbol of s with index i

For any string s and integers 2 and j suchthat 0 <7 <sand: < j <5,
sli..j] denotes the (possibly empty) substring of s starting at index ¢
and ending just before j

— 5[2..4] is the two-symbol string s[2]s|3]
— 5[2..2] is the empty string

- 5[0..5] = s

Theory in Programming Practice, Plaxton, Spring 2004

The (Exact) String Matching Problem

e Given a text string t and a pattern string p, find all occurrences of p in
t

Theory in Programming Practice, Plaxton, Spring 2004

Three Efficient String Matching Algorithms

e Rabin-Karp

— This is a simple randomized algorithm that tends to run in linear
time in most scenarios of practical interest

— The worst case running time is as bad as that of the naive algorithm,
ie., O(p-t)
e Knuth-Morris-Pratt (this lecture and the next)

— The worst case running time of this algorithm is linear, i.e., O(p+1)

e Boyer-Moore

— This algorithm tends to have the best performance in practice, as it
often runs in sublinear time

— The worst case running time is as bad as that of the naive algorithm

Theory in Programming Practice, Plaxton, Spring 2004

The KMP String Matching Algorithm: Plan

We maintain two indices, ¢ and r, into the text string

We iteratively update these indices and detect matches such that the
following loop invariant is maintained

— KMP Invariant: ¢ < r, t[f..r] = p|0..r — ¢}, and all occurrences of
the pattern p starting prior to £ in the text ¢ have been detected

We ensure that the invariant holds initially by setting £ and r to zero

Remark: We will see later that the algorithm also requires a
preprocessing phase involving only the pattern string p

Theory in Programming Practice, Plaxton, Spring 2004

Achieving Linear Time Complexity: The Plan

The algorithm performs only a constant amount of computation in
each iteration

The algorithm never decreases ¢ or r
In each iteration, either ¢ or r is increased
Note that the indices ¢ and r are at most ¢

By the KMP invariant, all matches have been detected once ¢ reaches
t, so we can terminate at that point

The preprocessing phase, which involves only p, runs in O(p) time

Theory in Programming Practice, Plaxton, Spring 2004

KMP lteration

Let's see how to define an iteration of the KMP loop

Assume the KMP invariant holds at the beginning of the iteration
Since the loop has not terminated, ¢ < ¢

We'd like to increase ¢ or r, while maintaining the invariant

There are two cases to consider

— Case 1: 0 <r—£ < p, i.e., we do not yet know whether there is a
match starting at index /

— Case 2: r — £ =P, i.e., we have found a match starting at index /¢

Theory in Programming Practice, Plaxton, Spring 2004

Case 1: 0<r—/4<Dp

o Case 1.1: t[r] = p[r — /]
— We've matched another symbol; increment r

e Case 1.2: r =/{ and t[r] # p|r — (]

— Our current match is the empty string and the next symbol does not
match p[0]; increment ¢ and r

e Case 1.3: r > (and t|r| # p[r — ¢|

— Our current match is a nonempty proper prefix of p and the next
symbol does not extend this match

— How should we update £ and r in this remaining subcase?

Theory in Programming Practice, Plaxton, Spring 2004

Case 1.3: 0<r—/4<p, r>¥ and t|r] # plr — (]

Our current match w is a nonempty proper prefix of p and the next
symbol does not extend this match
We cannot set £ to r because we might skip over one or more matches

— Example: Suppose p is axbcyaxbts and we've already matched
axbcyaxb, but the next symbol is not t

— In this example, we advance ¢ by 5

In general, we advance ¢ by the smallest £ > 0 such that the suffix
v = ulk..u] of u is a prefix of p

Note that v is simply the longest string that is both a proper prefix and
a proper suffix of u

— This string is called the core of u, denoted c(u)

— Later we will discuss how the KMP algorithm computes such cores

Theory in Programming Practice, Plaxton, Spring 2004

Case 2: r— V=D

We output that a match exists starting at index ¢

How do we update ¢ and r?

Note that this case is very similar to Case 1.3 treated earlier

We increase ¢ by p — ¢(p)

Theory in Programming Practice, Plaxton, Spring 2004

Core Computation

e |t remains only to describe how the KMP algorithm computes the cores
required in Cases 1.3 and 2

e Recall that each iteration of KMP is supposed to run in a constant
number of operations

e How can we hope to compute the core of a string in constant time?

Theory in Programming Practice, Plaxton, Spring 2004

KMP Core Computation: A Key Observation

e Note that in Case 1.3 we need to compute the core of some proper
prefix of p, while in Case 2 we need to compute the core of p

e Thus, if we precompute the core of every prefix of p, we will be able to
execute each iteration of the KMP loop in constant time

e |t remains to prove that we can compute the core of every prefix of p
in O(p) time

Theory in Programming Practice, Plaxton, Spring 2004

Some Properties of Core

Let u < v mean that u is both a prefix and a suffix of v
— For any string u, e < u

— The < relation is a partial order
Let © < v denote u < v and u # v

The core c(v) of a string v is the unique string such that for all strings

u
u=clv)=u=<wv

— It follows, by replacing u with ¢(v), that ¢(v) < v and hence c¢(v) < ¥

Let c°(u) denote u and for any 7 > 0 such that c'(v) is a nonempty
string, let ¢'!(u) denote c(c*(u))

Theory in Programming Practice, Plaxton, Spring 2004

A Key Property

e Claim: Foranyuand v, u <v = (Fi:0<1i:u=c(v))
e The proof is by induction on the length of v

e Base case (v =0):

U <0

{v=0,ie,v=c¢}
u=€¢ N v=c¢

{definition of ’: v =€ = c'(v) is defined for i = 0 only}
(Fi:0<i:u=c"(v))

Theory in Programming Practice, Plaxton, Spring 2004

Induction Step: v=n+1,n >0

u=<v
{definition of <}
u=v V u=<v
{definition of core}
u=uv V u=c)
{c(v) < T; induction hypothesis on second term}
u=v V (Fi:0<i:u=c"(c(v)))
{rewrite}
u=cW) V (Fi:0<i:u=c"(v))
{rewrite}
(Fi:0<i:u=c'(v))

Theory in Programming Practice, Plaxton, Spring 2004

