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Abstract— Linear recurrence relations are mathematical 

objects that describe a sequence of numbers in terms of its 

previous terms. In this paper, an algorithm based on matrix 

exponentiation and decrease and conquer approach is proposed to 

solve one of the problem regarding these relations, namely 

membership testing, where there is a need to determine whether a 

given number belongs to the sequence generated by a particular 

recurrence relation. The algorithm works specifically on 

monotonic linear recurrence relation, where the relation should be 

either increasing or decreasing constantly, to ensure that the 

decrease and conquer part of the algorithm works as intended.  

Keywords—membership testing; linear recurrence; matrix 
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I. INTRODUCTION 

Linear recurrence relations are mathematical objects that 
describe a sequence of numbers in terms of its previous terms. 
They have wide applications in various areas, such as computer 
science, cryptography, and physics. A problem in linear 
recurrence relations is to determine whether a given number 
belongs to the sequence generated by a particular recurrence 
relation, called membership testing.  

In this paper, an algorithm to test whether or not a given 
number is a member of a recurrence relation is proposed. This 
algorithm combines two well-known algorithms, namely matrix 
exponentiation and decrease and conquer (DnC). Matrix 
exponentiation is used to compute the nth term of the sequence 
generated by the recurrence relation, while decrease and conquer 
is used to reduce the computation time by recursively dividing 
the exponent into smaller subproblems.  However, due to the 
nature of the decrease and conquer algorithm, the linear 
recurrence relation needs to be monotonic, i.e. every elements of 
the recurrence relation needs to be strictly larger or smaller than 
the element before it. 

Later on, an analysis of the proposed algorithm is detailed, 
including its time complexity and space requirements. An 
example of the algorithm being used is also given, both for the 
searching the n-th term of the monotonic linear recurrence 
relation and the algorithm of membership testing of a given 
number in the linear recurrence relation.  

II. THEORETICAL FRAMEWORK 

A. Linear Recurrence Relation 

A reccurence relation is a mathematical relationship 

expressing 𝑓𝑛  as some combination of 𝑓𝑖 with 𝑖 < 𝑛. When 

formulated as an equation to be solved, recurrence relations are 

known as recurrence equations, or sometimes difference 

equations [1]. 

A linear recurrence equation is a recurrence equation on a 

sequence of numbers 𝑥𝑛 expressing 𝑥𝑛 as a first-degree 

polynomial in 𝑥𝑘  with 𝑘 < 𝑛 [2]. An example of such equation 

is as follows. 

 

A monotonic recurrence relation is a type of recurrence 
relation where the terms of the sequence either consistently 
increase or consistently decrease as the index of the sequence 
increases. In a monotonic increasing recurrence relation, each 
term of the sequence is greater than or equal to the previous term.  

Mathematically, if we have a recurrence relation where aₙ 
represents the nth term of the sequence, the sequence is called 
monotonic increasing if  

 

for all n.  

On the other hand, the sequence is called monotonic 
decreasing if  

 

for all n. 

B. Membership Testing 

Membership testing is the problem of testing whether or not 

an element is in a set of elements [3]. This set of elements may 
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be stated may be either finite or infinite. Finite set of elements 

are usually elements with clearly stated boundaries and 

explanation on what the members are.  

On the other hand, an infinite set is usually generated with 

some kind of functions or languages with predetermined rules 

on determining the members of the set. 

C. Matrix Exponentiation 

The concept of matrix exponentiation in its most general 
form is very useful in solving questions that involve calculating 
the term of a linear recurrence relation in time of the order of 
log2 𝑛 [4]. Matrix exponentiation is useful in solving these linear 
recurrence relation due to the fact that multiple variables can be 
calculated at once in a matrix, and also the fact that 
exponentiating a matrix will cost less in terms of multiplication 
rather than iterative solving makes it an efficient choice for 
solving linear recurrence relation problems. 

Matrix exponentiation uses the concept of divide and 
conquer to make the amount of matrix multiplication operations 
as minimum as possible. For example, to calculate the value of 
a matrix exponentiated to the power of 16, instead of multiplying 
the matrix by itself 16 times, it calculates power of 16 as power 
of 8 times power of 8, then power of 8 as multiplication of power 
of 4s, all the way to multiplication of the original matrices, 
resulting in about log2 𝑛 number of matrix multiplication. 

D. Decrease And Conquer Algorithm 

Decrease and conquer algorithms are algorithms which 

attempt to reduce a problem into smaller sub-problems to 

finally compute only one sub-problem. This approach can be 

seen as a modification to the more popular divide and conquer 

algorithms, which divide a problem into smaller subproblems, 

processing both, and combining the solutions of each sub-

problem [5].  

Decrease and conquer algorithms have two steps, which are 

decrease and conquer. The first step of the algorithm, decrease, 

is about reducing a problem into smaller sub-problems. On the 

other hand, the conquer step is where the algorithm processes 

only one of the divided subproblem. There is no “combine” step 

in the decrease and conquer algorithm, as there is only one 

processed sub-problem [6].  

There are three variants of decrease and conquer:  

1. Decrease by a constant: the problem is reduced by a 

constant value in each iteration. Some examples include 

insertion sort and selection sort.  

2. Decrease by a constant factor: the problem is reduced by 

a constant factor in each iteration. Some examples include 

binary search and fake-coin problems.  

3. Decrease by a variable size: the problem is reduced by 

different amounts in each iteration. Some examples include 

Euclid’s algorithm and selection by partition.  

The algorithm designed in this paper will take the second 

variant, decrease by a constant factor. 
 

III. ALGORITHM TO CALCULATE THE N-TH TERM OF A  LINEAR 

RECURRENCE RELATION 

In this paper, the linear recurrence solved is going to have 
the form of 

 

We can construct a k*k matrix T: 

  

And k*1 matrix F 

  

Where T*F equals to  

  

To calculate the n-th term of the recurrence relation using 
this method, we can calculate the matrix  

 

where the n-th term is the first term of the matrix 𝐶𝑛 [4]. 
Then, using the divide and conquer method, we can easily get 
𝑇𝑛 using the fact that  
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We can find the matrix 𝑇𝑛 in around  log2 𝑛 matrix 
multiplications. Given that each matrix multiplication requires 
around 𝑘3 operations, the time complexity of calculating the n-
th term of a linear recurrence relation is about 𝑂(𝑘3 log2𝑛). 

As an example, suppose we are searching for the 10-th term 
of the Pell sequence where: 

 

 The steps to calculate the 10-th term is as follows: 

1. Construct the 2 * 2 matrix T as follows 

 

2. Calculate 𝑇10, notice that 𝑇10  =  𝑇5  ∗  𝑇5 , where 

𝑇5  =  𝑇4  ∗  𝑇, 𝑇4  =  𝑇2  ∗  𝑇2 and 𝑇2  =  𝑇 ∗  𝑇. 
Then, the value of 𝑇10 is obtained as 

 

3. Construct the matrix F as follows 

 

4. Calculate C10 as follows 

 

where we got the value of C10 as 

 

5. The 10-th term of the recurrence relation is then 
obtained as the first value of C10. Thus, the following 
value is obtained. 

 

 From the explanation before, we can see that the 
algorithm to get th n-th term of the linear recurrence relation 
works by using the concept of matrix exponentiation, where we 
find the n-th power of a matrix using a divide and conquer 
approach. The value of the matrix is then used to be multiplied 

with a starting state values of the recurrence relation to finally 
get the correct term of the linear recurrence. 

IV. ALGORITHM TO TEST MEMBERSHIP OF A GIVEN NUMBER IN 

A MONOTONIC LINEAR RECURRENCE RELATION 

The algorithm starts with a state of testing whether or not the 
given number is the first element of the linear recurrence 
relation. If the number is not the first element of the linear 
recurrence relation, then we can check the second element of the 
linear recurrence relation to see if the linear recurrence is 
increasing or decreasing. 

If the number is still not found as a member in the linear 
recurrence relation at this point, we should check whether the 
given number may appear in the later elements of the sequence. 
We can check from the first element and rule out the possibilities 
of the number appearing if one of the followings is true: 

1. The monotonic linear recurrence relation is increasing 
and the given number is smaller than the first element, 
or 

2. The monotonic linear recurrence relation is decreasing 
and the given number is larger than the first element. 

If it is shown that the given number may appear in the later 
indices of the linear reccurence relation, then we may proceed to 
make the set to be tested larger by increasing the checked 
number of the linear recurrence relation by a constant multiplier 
until either one of the three conditions is met: 

1. The monotonic linear recurrence relation is increasing 
and the current checked index of the recurrence relation 
is larger than the given number, or 

2. The monotonic linear recurrence relation is decreasing 
and the current checked index of the recurrence relation 
is smaller than the given number, or 

3. The current checked index of the recurrence relation is 
same as the given number. 

 At this point, if we found a number in the recurrence relation 
to be the exact same as the given number, we can proceed to 
declare that the given number is, in fact, a member of the 
recurrence relation. If not, then we can proceed with the next 
part of the algorithm. 

When the testing state is finalized, i.e. we know that the 
given number may only be a member in that state, then we can 
proceed to implement a decrease and conquer technique to find 
whether the given number is a member in the monotonic linear 
recurrence relation. The algorithm used is as follows: 

1. Establish three variables, namely left, middle, and right, 
with left being the number one and right being the 
number of the largest index of the testing state. 

2. Calculate middle as the midpoint between left and right. 

3. Check whether the middle’s element of the linear 
recurrence relation is the given number. If not, check 
whether the given number should be in the leftside of 
the midpoint or the rightside of the midpoint. We can 
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know whether a given number may appear in the leftside 
or the rightside of the midpoint with rules as follows: 

a. If the monotonic linear recurring relation is 
increasing, the given number may appear on the 
leftside of the midpoint if the given number’s value 
is smaller than the midpoint’s value. Otherwise, it 
may lie on the rightside of the midpoint. 

b. If the monotonic linear recurring relation is 
decreasing, the given number may appear on the 
leftside of the midpoint if the given number’s value 
is larger than the midpoint’s value. Otherwise, it 
may lie on the rightside of the midpoint. 

4. If the given number may lie on the leftside of the middle 
point, change the value of right to middle-1. Otherwise, 
change the value of left to middle+1. 

5. If the given number is already found in the linear 
recurrence relation declare the given number as a 
member of linear recurrence relation and stop the 
algorithm. On the other hand, if the size of the testing 
state is one and the given number is not found, it is 
declared as not a member of the linear recurrence 
relation. Otherwise, go to step 2 of the algorithm. 

As an example, suppose the algorithm attempts to check the 
membership of the number 6765 in the linear recurrence with 
the formula of 

  

The following are the steps taken to test the membership of 
the given number: 

1. Check the first number of the recurrence relation. 𝐹1 =
1 and the given number 6765 may occur in the later 
index of the sequence since the relation is increasing. 

2. Expand the testing size with constant multiplier of 2. 

𝐹2  =  2 <  6765, expand space by a factor of 2. 

3. 𝐹4  =  3 < 6765, expand space by a factor of 2. 

4. 𝐹8  =  21 < 6765, expand space by a factor of 2. 

5. 𝐹16  =  987 < 6765, expand space by a factor of 2. 

6. 𝐹32  =  2178309 >  6765, the testing state is 
finalized. 

7. Establish left = 1, right = 32, and mid = 16. 

8. Check 𝐹𝑚𝑖𝑑 . 𝐹16  =  987 <  6765, the given number 
may appear on the rightside of the midpoint. 

9. Change left’s value to mid+1. left <- 17. 

10. Calculate new mid index = 24. 

11. Check 𝐹𝑚𝑖𝑑 .  𝐹24  =  46368 >  6765, the given 
number may appear on the leftside of the midpoint. 

12. Change right’s value to mid-1. right <- 23. 

13. Calculate new mid index = 20. 

14. Check 𝐹𝑚𝑖𝑑 .  𝐹20  =  6765 =  6765.  

15. It is concluded that 6765 is a member of the linear 
recurrence given 𝐹𝑛  =  𝐹𝑛−1   +  𝐹𝑛−2 𝑤𝑖𝑡ℎ 𝐹0 =
0 𝑎𝑛𝑑 𝐹1 = 1. 

Another example is the case where the given number is not 
a member of the given linear recurrence relation. For example, 
suppose the algorithm attempts to check the membership of the 
number 600 in the linear recurrence with the formula of 

 

The following are the steps taken to test the membership of 
the given number: 

1. Check the first number of the recurrence relation. f1=1 
and the given number 600 may occur in the later index 
of the sequence since the relation is increasing. 

2. Expand the testing size with constant multiplier of 2. 

𝐿2  =  3 <  600, expand space by a factor of 2. 

3. 𝐿4  =  7 < 600, expand space by a factor of 2. 

4. 𝐿8  =  47 < 600, expand space by a factor of 2. 

5. 𝐿16  =  2207 > 600, the testing space is finalized. 

6. Establish left = 1, right = 16, and mid = 8. 

7. Check 𝐿𝑚𝑖𝑑. 𝐿8  =  47 <  600, the given number may 
appear on the rightside of the midpoint. 

8. Change left’s value to mid+1. left <- 9. 

9. Calculate new mid index = 12. 

10. Check 𝐿𝑚𝑖𝑑 .  𝐿12  =  322 < 600, the given number 
may appear on the rightside of the midpoint. 

11. Change left’s value to mid+1. left <- 13. 

12. Calculate new mid index = 14. 

13. Check 𝐿𝑚𝑖𝑑. 𝐿14 = 843 > 600, the given number may 
appear on the leftside of the midpoint. 

14. Change right’s value to mid-1. right <- 13. 

15. Check 𝐿𝑚𝑖𝑑. 𝐿13 = 233 != 600 and the testing state size 
is <2.  

16. It is concluded that 600 is not a member of the linear 
recurrence given 𝐿𝑛 =  𝐿𝑛 − 1 +  𝐿𝑛 − 2 with 𝐿0 =
2 𝑎𝑛𝑑 𝐿1 = 1. 

From the examples, we can see that the algorithm starts with 
expanding the testing state first, until we can be sure that the 
given number may only lie inside the established testing state. 
This is done so that the decrease and conquer algorithm used 
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afterwards can guarantee whether or not the given number is a 
member of the monotonic linear recurrence relation. 

V. COMPLEXITY ANALYSIS 

A. Time Complexity   

The time complexity analysis can be divided into the two 

parts of the algorithm, namely matrix exponentiation algorithm 

and decrease and conquer algorithm. The relation between the 

two algorithm is that the decrease and conquer algorithm uses 

the matrix exponentiation in its part to calculate the n-th term 

of the linear recurrence relation. 

The time complexity of the matrix exponetiation first comes 

from the multiplication of the matrices with complexity of 

𝑂(𝑘3) where k is the number of row of the matrix being 

multiplied. This matrix multiplication will then be done with 

the complexity of 𝑂(log2 𝑛) due to divide and conquer, where 

n equals to the term that is currently being searched. Thus, the 

final time complexity of the matrix exponentiation is 

𝑂(𝑘3 log2𝑛). 

The time complexity of the decrease and conquer first 

comes from the expanding the state size to accommodate the 

given number in the linear reccurence. This takes the 

complexity of 𝑂(𝑘3 log2𝑛). * 𝑂(log2 𝑛) or equals to 

𝑂(𝑘3 log2
2 𝑛) where 𝑂(𝑘3 log2𝑛) is obtained from the 

complexity of the matrix exponentiation used for every term 

checked. The variable n refers to the minimum number needed 

to accommodate the given number and k refers to the highest 

value in the recurrence relation formula 𝑥𝑛. 

The decrease and conquer then takes another time 

complexity of 𝑂(𝑘3 log2𝑛)* 𝑂(log2 𝑛)) or equals to 

𝑂(𝑘3 log2
2 𝑛) to search for the given number in the recurrence 

relation. This is due to the algorithm using matrix 

exponentiation and the narrowing-down of the decrease and 

conquer in the later parts. 

Thus, the total time complexity of the algorithm is 

𝑂(𝑘3 log2
2 𝑛), where n refers to the minimum number needed to 

accommodate the given number and k refers to the highest value 

in the recurrence relation formula 𝑥𝑛. 

However, it needs to be noted that the time complexity may 

get worse for larger number higher than the 64-bit maximum 

value due to the operations needed for such number gets more 

and more time consuming as it gets further from the value. 

Thus, in reality, one can not expect the algorithm to run 

perfectly in 𝑂(𝑘3 log2
2 𝑛) as the constant gets larger for higher 

numbered values. 

B. Space Complexity 

The space complexity of this algorithm comes from storing 

the data of the matrix being used for matrix exponentiation. 

Approximately, about log2 𝑛 of k*k matrices and two k*1 

matrix are needed for this algorithm to work.  

Around log2 𝑛 k*k matrices are needed for storing the value 

of the matrices for every power of two if needed, and two k*1 

matrix is needed for storing the starting values of the linear 

recurrence term and the needed values of the linear recurrence 

term.  

Thus, the total space complexity needed for this algorithm 

is 𝑂(𝑘2 log2𝑛). An important thing to note is for number larger 

than the maximum 64-bit value, the constant of the space 

complexity gets larger and the program can not be expected to 

run in aforementioned space complexity. 

VI. TESTING 

The following shows the results of the program for some known 

monotonic linear recurrence relation. 

A. Fibonacci Sequence 

A fibonacci sequence is defined as follows. 

 

 
The result of testing a number’s membership in the fibonacci 

sequence is as follows. 

 

Given 

Num 

ber 

Is A 

Mem 

ber 

Resullt 

1 Yes  
2 Yes  
3 Yes  
5 Yes 

 
9 No  
20 No  
100 No  
1597 Yes  
4181 Yes  
4182 No  

 

B. Padovan Sequence 

A padovan sequence is defined as follows. 

 

 
 

The result of testing a number’s membership in the padovan 

sequence is as follows. 
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Give

n 

Num 

ber 

Is A 

Me

m 

ber 

Resullt 

4 Yes  

6 Yes  
8 Yes  
10 Yes  
11 No  
25 No  

55 No  

3329 Yes  

5842 Yes  
5845 No  

VII. CONCLUSION 

From the explanations and testing carried out, it can be seen 

that the algorithm proposed in this paper can solve the 

membership testing problem of a given number in a monotonic 

linear recurrence relation. This algorithm uses the concept of 

matrix exponentiation and decrease and conquer algorithm and 

have the time complexity of 𝑂(𝑘3 log2
2 𝑛) and space complexity 

of 𝑂(𝑘2 log2𝑛), where n refers to the minimum index whose 

value is enough to accommodate the given number and k refers 

to the highest value in the recurrence relation formula 𝑥𝑛. 
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