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Abstract— This paper presents the implementation of a 

binary segmentation algorithm for change point detection in 

a given dataset. The algorithm offers efficient and fast signal 

segmentation by recursively detecting change points and 

splitting the signal into sub-segments with a specified cost 

function. With a computational complexity of O(nlogn), 

where n is the number of samples, the algorithm is suitable 

for large datasets. It is also customizeable and can run with 

multiple custom cost functions. Experimental evaluations on 

the algorithm includes a case study on segmentation in 

Bandung’s COVID Dataset.  
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I.   INTRODUCTION 

Change point detection is a fundamental problem in various 

domains, including signal processing, finance, and 

environmental monitoring. The ability to identify and 

characterize transitions in data is crucial for understanding 

underlying patterns, making informed decisions, and taking 

appropriate actions. In this paper, we focus on the 

implementation of a binary segmentation algorithm for change 

point detection in signals and its application to COVID-19 data 

in Indonesia. 

 

The binary segmentation algorithm offers a sequential 

approach to signal segmentation, where a single change point is 

detected in the complete input signal. The signal is then split into 

two sub-signals based on this change point, and the process is 

recursively applied to each sub-signal. This approach enables 

efficient segmentation of signals with a computational 

complexity of O(nlogn), where n represents the number of 

samples. 

 

Through this study, we aim to highlight the practical utility of 

the binary segmentation algorithm for change point detection 

and its relevance in addressing real-world problems such as 

monitoring and managing the COVID-19 pandemic. The choice 

of using COVID-19 data for testing the application of binary 

segmentation algorithm is motivated by the nature of the 

pandemic.  

 

 

The number of active cases in a given region can be 

considered as a change point, fluctuating over time. By detecting 

these change points, we can identify periods with rising or 

falling cases, helping to assess the severity of the situation and 

determine appropriate measures for disease control. 

 

II.  DEFINITIONS 

A. Change Point Detection 

 

Change point detection refers to the task of identifying points 

or locations in a sequence of data where the underlying 

statistical properties of the data change. These changes can 

manifest as shifts in mean, variance, distribution, or other 

relevant characteristics. A change point, also known as a 

structural break, is the specific point in the sequence where the 

change in properties occurs. Change point detection aims to 

locate and characterize these change points, providing insights 

into the dynamics and transitions within the data. 

 

Change point detection problems usually consists of 3 

components, which include: 

1. Search Function, the search function is responsible for 

exploring and examining the potential change points in 

the input sequence. It systematically scans the data and 

identifies candidate locations where a change in the 

underlying properties may occur.  

2. Cost Function, measures the degree of change at a 

specific location or split point in the input sequence. 

The cost function serves as a criterion for selecting the 

most suitable change points based on fit. 

3. Constraint, determines the point at which a given 

search function should stop searching. 

 

Together, the search function and the cost function form the 

core components of a change point detection algorithm. The 

search function identifies potential change points in the data, 

while the cost function evaluates the significance of these points 

based on the observed discrepancies, while satisfying the 

constraint. By combining these components, change point 

detection algorithms can efficiently and effectively locate and 

characterize transitions in the input sequence. 
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A change point detection algorithm usually accepts a set of 

input sequence X as an argument, returning the index of change 

points in said sequence as follows: 

 

The input sequence: X = {x₁, x₂, ..., xn} 

The index of the change point: t (t ∈ {1, 2, ..., n-1}) 

 

 
Figure A.1. Change Points in Various Types of Distribution Shift 

Denoted by Orange Vertical Lines (Source: https://pro.arcgis.com) 

 

B. Some Cost Functions 

 

Some of the cost functions that we are going to implement in 

the paper are: 

 

1. Least Absolute Deviation (LAD/L1): 

This cost function detects changes in the median of a 

signal. The Least Absolute Deviation (L1-norm or absolute 

error), is a robuest estimator of a shift in the central point 

(mean, median, mode) of a distribution. It computes the 

sum of the absolute differences between the observed data 

points and the median between the interval. It minimizes the 

sum of the absolute residuals, making it robust against 

outliers. 

 

Objective function: minimize Σ|Yᵢ - Ŷᵢ| 

Notation: min Σ|Yᵢ - Ŷᵢ| 

 

2. Least Squared Deviation (LSD/L2): 

This cost function detects mean-shifts in a signal. The 

Least Squared Deviation cost function (L2-norm or mean 

squared error), calculates the sum of squared differences 

between the observed data points and the estimated average 

values. It minimizes the sum of squared residuals and is 

commonly used in linear regression problems. 

 

Objective function: minimize Σ(Yᵢ - Yᵢ̄ )² 

Notation: min Σ(Yᵢ - Yᵢ̄)² 

 

C. Binary Segmentation (Search Function) 

 

Binary segmentation is search function in change point 

detection that follows the divide and conquer paradigm. In 

binary segmentation, the input sequence is divided into two sub-

segments by detecting a single change point. The algorithm 

recursively applies the same process to each resulting sub-signal 

until no further change points are detected or a stopping criterion 

is met.  

 

The steps required by the search function in determining the 

change points are: 

1. Initialization: Define the initial interval as the full 

segment, set cost thresholds and hard limits. 

2. Segmentation: Divide the initial interval into two sub-

segments, evaluate the cost of each sub segment 

independently. The cost function will be fitted into the 

sub-segments. 

3. Cost evaluation: Cost function will compute the cost of 

each fitted sub-interval in phase 2. The purpose of this 

cost evaluation is to gain a numeric value of the 

effectiveness of the segmentation itself. 

4. Change point determination: If the cost of either sub-

interval exceeds the predefined threshold or 

significance level, then a potential change point is 

found. We will select the subsegment with the highest 

cost as the candidate for change point. 

5. Recursive process: Recursive application of step 1-4 

will be done on sub-interval before the candidate 

change point and the sub-interval after it. The process 

recursively continues while a hard limit for change 

point has not been reached, or the cost of any sub 

interval has not fallen below a predefined limit. 

 

By combining the search function (segmentation) and the 

cost function, binary segmentation iteratively identifies change 

points by evaluating the cost of sub-intervals and splitting them 

until no further significant changes are detected. 

 

 

 
Figure C.1. Binary Segmentation In Action, Segmenting A Given 

Signal Whenever A Change Point Has Been Detected (Source: 

https://centre-borelli.github.io/ruptures-docs/user-

guide/detection/binseg/) 

 

 

D. Binary Segmentation Search as a Divide and Conquer 

Algorithm 

 

A divide and conquer algorithm is a problem-solving 

approach that involves breaking down a complex problem into 

smaller sub-problems, solving them independently, and then 

combining the solutions to solve the original problem. The main 

idea is to divide the problem into manageable parts, conquer 

each part by solving it recursively or iteratively, and then 

merging the solutions to obtain the final solution. This technique 

is often employed when the problem exhibits overlapping sub-

problems or can be naturally divided into smaller instances. 
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Binary segmentation can be considered a divide and conquer 

algorithm due to its iterative nature and the recursive splitting of 

the input signal.  

 

The two distinct steps are as follows: 

1. Divide: The algorithm starts with the complete input 

sequence and detects a change point, dividing it into two 

sub-signals. This process is then repeated on each 

resulting sub-signal until the desired level of 

segmentation is achieved. 

2. Conquer: Upon being bounded by a constraint (no further 

changes detected), each sub-segment would return the 

changepoint detected from itself. The final change point 

array is a concatenation of all of each sub-segment’s 

change point. 

 
Figure D.1. Conquer Phase, Propagating Sub Segment’s Change 

Point Back To Original Segment (Source: https://centre-

borelli.github.io/ruptures-docs/user-guide/detection/binseg/) 

 

E. Several COVID19 Dataset Metrics 

 

COVID-19 active cases refer to the number of individuals 

who are currently infected with the COVID-19 virus and are 

actively undergoing treatment or isolation. It represents the 

difference between the total number of confirmed COVID-19 

cases and the sum of recovered cases and deaths. 

 

COVID-19 daily recoveries refer to the number of individuals 

who have recovered from the COVID-19 virus within a 24-hour 

period. It represents the number of people who were previously 

infected and have now completed their treatment or isolation 

successfully. 

 

Tracking both metrics provides crucial information about the 

current state of the COVID-19 outbreak in a specific region or 

population. Utilizing change point detection techniques on 

COVID-19 active cases can help identify significant shifts in the 

infection rate, indicating periods of increased transmission or 

the effectiveness of control measures. This information can aid 

in making informed decisions regarding public health 

interventions and resource allocation. 

 

 

 

 

 

 

III.   IMPLEMENTATION AND ANALYSIS 

 We will be implementing Binary Segmentation and 2 Cost 

Functions, L1 and L2 Cost to compare the differences both these 

cost functions can make. The code will be implemented in 

Python, and the excerpt found in this document will only include 

snippets important parts, in other words, it is not complete / 

compilable. Please refer to Part V for the complete source code. 

 

A. Implementation of Cost Function 

class CostL1: 

 

    def error(self, start, end) -> float: 

        if end - start < self.min_size: 

            raise NotEnoughPoints 

        sub = self.signal[start:end] 

        med = np.median(sub, axis=0) 

 

        return abs(sub - med).sum() 

 
class CostL2: 

 

    def error(self, start, end): 

        if end - start < self.min_size: 

            raise NotEnoughPoints 

        return self.signal[start:end].var(axis=0).sum() * (end - start) 

 

  Both cost functions classes implement a function called cost, 

which returns the corresponding cost for values in range from 

start till end. CostL1 Takes the sum of absolute difference 

between all of the values and the median value, while CostL2 

returns the sum of all the variances in the interval, multiplied 

by the end and the start date to account for the number of 

ranges being evaluated. 

 

B. Implementation of Binary Segmentation 

  
class Binseg(): 
 

    def _seg(self, n_bkps=None): 

        bkps = [self.n_samples] 
        stop = False 

        while not stop: 

            stop = True 
            new_bkps = [ 

                self.single_bkp(start, end) for start, end in pairwise([0] + bkps) 

            ] 
            bkp, gain = max(new_bkps, key=lambda x: x[1]) 

 

            if bkp is None:  # all possible configuration have been explored. 
                break 

 

            if n_bkps is not None: 
                if len(bkps) - 1 < n_bkps: 

                    stop = False 

 
            if not stop: 

                bkps.append(bkp) 
                bkps.sort() 

                 

        partition = { 
            (start, end): self.cost.error(start, end) 

            for start, end in pairwise([0] + bkps) 

        } 
        return partition 

 

    def single_bkp(self, start, end): 
        segment_cost = self.cost.error(start, end) 

        if np.isinf(segment_cost) and segment_cost < 0:  # if cost is -inf 
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            return None, 0 

        gain_list = list() 
        for bkp in range(start, end, self.jump): 

            if bkp - start >= self.min_size and end - bkp >= self.min_size: 

                gain = ( 
                    segment_cost 

                    - self.cost.error(start, bkp) 

                    - self.cost.error(bkp, end) 
                ) 

                gain_list.append((gain, bkp)) 

        try: 
            gain, bkp = max(gain_list) 

        except ValueError:  # if empty sub_sampling 

            return None, 0 
        return bkp, gain 

 

    def fit(self, signal): 
        self.signal = signal.reshape(-1, 1) 

        self.n_samples, _ = self.signal.shape 

        self.cost.fit(signal) 
 

        return self 

 
    def predict(self, n_bkps=None): 

        partition = self._seg(n_bkps=n_bkps) 
        bkps = sorted(e for s, e in partition.keys()) 

        return bkps 

 

The _seg function is a method that performs the actual 

segmentation. It takes an optional parameter n_bkps, which 

specifies the desired number of breakpoints. Initially, the 

function sets the breakpoints to include the entire length of the 

input data. It then will divide and conquer the segment 

iteratively, entering a loop where it tries to find the best 

breakpoint based on the cost function. It calculates the cost for 

all possible breakpoints and selects the one with the highest 

gain. Upon doing so, it will create new subsegments for the 

loop to evaluate (Divide). For each subsegment explored, it 

will append the results to a global array bkps (Conquer). If 

n_bkps is specified, the loop continues until the number of 

breakpoints reaches n_bkps. It returns a partition dictionary 

that contains the start and end indices of each segment along 

with their associated error costs. 

 

The single_bkp function calculates the gain for a single 

breakpoint given a start and end index. It first computes the 

error cost for the entire segment. If the segment cost is 

negative infinity or less than 0, it means the cost is invalid, and 

the function returns None and 0 gain. Otherwise, it iterates 

over possible breakpoints within the segment, considering 

only those that satisfy the minimum segment size condition. 

For each valid breakpoint, it calculates the gain by subtracting 

the error costs of the left and right segments from the total 

segment cost. The function returns the breakpoint and its 

corresponding gain. 

 

The fit function is used to prepare the input data for 

segmentation. It takes a signal parameter. The function 

reshapes the signal to have a single column and determines the 

number of samples. It then fits the cost function to the signal, 

which is necessary for subsequent calculations.  

 

The predict function is the main interface for obtaining 

the segmented breakpoints. It takes an optional parameter 

n_bkps to specify the desired number of breakpoints. It calls 

the _seg function to obtain the partition dictionary. It then 

extracts the start and end indices from the dictionary keys and 

sorts them to obtain the breakpoints in ascending order. The 

function returns the sorted list of breakpoints. 

 

C. Application in Bandung COVID19 Dataset Data 

The data for this study was obtained from the official 

website of the West Java Provincial Government. It is publicly 

available at https://opendata.jabarprov.go.id/id/dataset/ 

perkembangan-harian-kasus-terkonfirmasi-positif-covid-19-

berdasarkan-kabupatenkota-di-jawa-barat. 

 

The dataset was downloaded as a zip file containing an 

Excel file with metrics data for daily deaths, active cases, and 

more. The data was loaded into a Python notebook for 

analysis. The implemented binary segmentation algorithm was 

then applied to detect change points in the COVID-19 active 

cases data. The algorithm identified significant transitions in 

the number of active cases, indicating potential changes in the 

virus spread. The change points were determined using cost 

functions such as Least Absolute Deviation (Cost1) or Least 

Squared Deviation (Cost2). 

 

The detected change points were then visualized using 

Matplotlib, a Python library for data visualization. Matplotlib 

enabled the creation of informative graphs representing the 

COVID-19 active cases over time, highlighting the identified 

change points. 

 

D. Analysis Of Results 

   Subsections D.1. and D.2. will show the results of analysis 

obtained using the algorithm and an insight as to how change 

point intervals can be used applicatvely. 

 

D.1. Bandung’s Active Cases  

 

 
 

 
Figure D.1.1 Segmentation of Active Cases Using L1 (a) and L2 (b) 

Cost Function (Source: Writer) 
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     The two above graphs show the different change points of the 

number of active COVID19 cases in Bandung City, denoted by 

vertical red lines, given by the binary segmentation using two 

L1 and L2 Cost Function. A hard limit of 15 change points 

(vertical lines) were given to both functions.  

 

Although the two algorithms differed in how the change 

points were allocated in the graph, the algorithm suceeded in 

segmenting and detecting the change points that it deemed 

existed in the graph. In this case, the L1 Cost function seemed 

to have performed better than L2, allocating change points more 

sparingly. The Cost L2 function placed higher error value on 

sudden spikes, and as the result, ignored most of spikes that were 

small (most distribution changes were given when cases spiked). 

 

This is because the L1 Cost Function depends on the median 

of the data on an interval, compared to the average function 

which with L2. The sudden spikes caused a huge impact on the 

average of values within the interval, as the result, the change 

points were detected by CostL1 there.  By using the median 

instead of the mean, CostL1 is more robust to outliers / sudden 

distribution changes. 

 

One way of extracting insight from the figure is by looking at 

the trend of generated change point interval. For example, using 

Figure D.1.1.a, Interval 0 (03/2020 – 11/2020) showed a 

relatively low amount of active cases, while interval 1 (11/2020 

– 4/2021) showed a rise in infection, before seeing a huge spike 

and drop at cases on interval 2 (4/2021 – 7/2021).  

 

From that result, we can then hypothesize for the reason 

behind the change in distrubution. For example, the reason 

behind interval 0 might be that at the COVID pandemic hasn’t 

been common yet in Bandung during March – November 2020. 

As the infection spreads to the city, there is a gradual steady 

increase of cases on November 2020 – Mei 2021, before cases 

rapidly soared and dipped on Mei 2021 – July 2021, most 

probably as the result of governmental measures such as 

lockdown to contain the pandemic.  

 

D.2. Bandung’s Daily Recovered Cases 

 

 
  

 
Figure D.2.1. Segmentation of Daily Recovered Cases using L1 (a) 

and L2 (b) Cost Function (Source: Writer) 

 
The two above graphs show the different change points of the 

number of daily recovered COVID19 cases in Bandung City, similar to 

point D.1. with a hard limit of 15 change points.  

 

The algorithm suceeded in segmenting and detecting the 

change points that it deemed existed in the graph. The two 

algorithms differed in how the change points were allocated in 

the graph, however both cost functions seemed to have 

performed similarly. The allocation of change points seemed not 

very optimal as they were clustered tighly around spikes.  

 

In this case, both functions placed many change points on 

spikes and sudden increases. This is because on the original data 

distribution, cases were not distributed equally across days, and 

instead were distributed as “spikes”. This is due to the nature of 

the metric being collected itself.  

 

Figure D.1.1 as the active case graph was more continuous 

than Figure D.2.2. This is because people that have recovered 

from COVID will only be counted once, meanwhile people that 

have COVID will have several active cases count, ranging 

several days, starting from they were sick until they recover. As 

the result, the underlying distribution for active cases was more 

smooth compared to recovered cases, which were more discrete 

in nature. 

 

CostL1 and CostL2 as simple cost functions that accounts for 

average/mean did not perform very well because of the discrete 

nature of the dataset, being treated as outliers that skew the 

result. To gain better results, preprocessing discrete data or 

using an alternative more robust cost functions like Gaussian 

Process Change or Kernelized Mean Change can be used 

instead. 

 

IV.   CONCLUSION AND SUGGESTIONS 

In conclusion, this paper presented the implementation of a 

binary segmentation algorithm for change point detection. The 

algorithm follows a divide and conquer approach, recursively 

splitting the input signal based on detected change points. The 

algorithm was applied to COVID-19 active cases data in 

Bandung, showcasing its effectiveness and customizability with 

various cost functions. The change points identified using the 

binary segmentation algorithm can provide valuable insights for 

extracting distributions out of a given data, such as  monitoring 

the COVID-19 situation, identifying periods of rising or falling 

dynamic of infection rates.  
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Future works that can extend this paper include 

experimentation on the various other types of cost function that 

are slope/model based and are not mean distribution shift based 

like CostL1 or CostL2. Other types of search functions like 

using the Dynamic Programming approach can also be used to 

do the segmentation, rather than Binary Segmentation. 

 

 

V.   MISCELLANEOUS 

The source code from the program used for this paper can be 

accessed from the following link: 

https://colab.research.google.com/drive/1HB9Ksntwv6F930

EfEJXI7gfuW2hUlwwA?usp=sharing 

 

The video briefly explaining about the paper can be found on 

the following link: 

https://www.youtube.com/watch?v=PMzVevzTd4E 
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