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Abstract— This paper explores the application of dynamic 

programming for efficient comparison in text-based files 

comparison. Text-based files comparison is an important feature 

and can be used in version control system, plagiarism detection 

application, data analysis, and data management. Dynamic 

programming provides an effective approach to track and 

compare changes between different files. The proposed algorithm 

utilizes dynamic programming tables, subproblem 

decomposition, and optimal substructure to determine the longest 

common subsequence. Experimental evaluation demonstrates the 

superiority of the dynamic programming solution in terms of 

time complexity, making it a valuable approach for efficient text-

based comparison. This paper highlights the practical 

implications of dynamic programming for text-based files 

comparison. 
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I.  INTRODUCTION  

Text-based file comparison plays a crucial role in various 
domains, including software development, document 
management, and data analysis. When dealing with large 
volumes of textual data, accurately identifying differences and 
similarities between files becomes a complex task. Efficient 
and precise file comparison is essential for tasks such as 
version control, plagiarism detection, content synchronization, 
and data integration. By employing advanced techniques and 
algorithms, text-based file comparison enables the automatic 
detection of changes, facilitating efficient data processing, 
decision-making, and ensuring data integrity. In this article, we 
will explore the challenges involved in text-based file 
comparison and delve into the various methodologies and 
approaches used to achieve accurate and efficient comparisons, 
ultimately enabling better management and analysis of textual 
data. 

Dynamic programming is a powerful algorithmic approach 
that breaks down complex problems into smaller, overlapping 
subproblems, allowing for efficient computation of optimal 
solutions. Its application in version control can significantly 
improve the efficiency of file comparisons. By leveraging 
dynamic programming, we can determine the longest common 
subsequence between two files, which represents the 

unchanged or minimally changed portions. This approach 
reduces the computational complexity of file comparisons, 
enabling faster and more accurate results. 

This paper explores the application of dynamic 
programming for efficient text-based files. Specifically, the 
paper focus on the longest common subsequence problem, 
which serves as a fundamental building block for file 
comparisons. This paper proposes an algorithm that utilizes 
dynamic programming tables, subproblem decomposition, and 
optimal substructure to identify the longest common 
subsequence between files. The paper’s experimental 
evaluation demonstrates the superiority of the dynamic 
programming solution in terms of time complexity, 
highlighting its effectiveness for efficient text-based files 
comparison. 

The efficient comparison of files is crucial for effective 
collaboration, conflict resolution, and maintaining a 
comprehensive revision history. The results of this study have 
practical implications for developers, technical writers, and 
other professionals who rely on version control systems. They 
can benefit from improved efficiency and accuracy in tracking 
and analyzing changes in text-based files. 

II. THEORETICAL BASIS 

A. Text Based Files 

Text-based files are computer files that store data in plain 
text format, meaning they contain human-readable characters 
and can be edited with a simple text editor. These files are 
widely used for storing and exchanging information in various 
applications and systems. 

Here are a few common types of text-based files: 

1. Plain Text Files: These files contain unformatted text with 
no special styling or formatting. They typically have a 
".txt" extension and can be opened and edited by any 
basic text editor. 

2. Configuration Files: Many software applications use text-
based configuration files to store settings and preferences. 
These files often have specific syntax and structure that 
the application understands and interprets. 
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3. Markup Languages: Markup languages like HTML 
(Hypertext Markup Language) and XML (eXtensible 
Markup Language) are text-based files that use specific 
tags and elements to define the structure and presentation 
of data. They are widely used for web development, 
document storage, and data interchange. 

4. Programming Source Code: Source code files, such as 
those written in programming languages like Python, 
Java, or C++, are also text-based. They contain the 
instructions and commands that make up a computer 
program and can be edited with a code editor or an 
integrated development environment (IDE). 

5. CSV Files: CSV (Comma-Separated Values) files store 
tabular data in plain text format, where each value is 
separated by a comma. They are commonly used for data 
storage, exchange, and analysis in spreadsheet programs 
and database systems. 

6. Log Files: Applications and systems often generate log 
files that record events, activities, and errors. Log files are 
typically text-based and provide valuable information for 
troubleshooting and analysis. 

The advantage of text-based files is their simplicity and 
interoperability. They can be easily opened, edited, and read 
by humans as well as various software applications across 
different platforms. Additionally, text-based files are often 
smaller in size compared to binary files, which can be 
beneficial for storage and transmission. 

B. Dynamic Progamming 

Dynamic programming is a problem-solving technique 
developed by Richard Bellman in the 1950s. Dynamic 
programming requires two important properties in a problem 
to be applicable: optimal substructure and overlapping 
subproblems. If a problem can be solved by combining 
optimal solutions to non-overlapping subproblems, it is 
considered a "divide and conquer" strategy, rather than 
dynamic programming.  

Optimal substructure refers to the property where the 
solution to a given optimization problem can be obtained by 
combining optimal solutions to its subproblems. Typically, 
these optimal substructures are described using recursion. For 
instance, consider a graph G=(V,E) and the problem of finding 
the shortest path p from a vertex u to a vertex v. The shortest 
path p exhibits optimal substructure: if we take any 
intermediate vertex w on this path, we can split p into sub-
paths p1 from u to w and p2 from w to v. These sub-paths are 
also the shortest paths between their respective vertices.  

Dynamic programming takes into account overlapping 
sub-problems that might be solved repeatedly in a naïve 
recursive solution and solves each sub-problem in once. For 
example, consider the recursive formula in fibonacci 
sequence: 

f(n) = f(n-1) + f(n-2) 

with base case f(0) = f(1) = 1. Then f(4)= f(3) + f(2)  and  
f(3) = f(2) . f(1) . It is visible that f(2) will be solved in the 
recursive sub-tress of both f(4) and f(3). Unlike the naïve 

approach that solves the same problem over and over,  
dynamic programming calculates the solution to f(2)  only 
once. 

 

Figure 1. Fibonacci Recursion Tree (Source: 

math.stackexchange.com) 

 
Dynamic programming can be categorized into two different 
approaches: 

1. Bottom-up (Tabulation) Approach 

In the bottom-up approach, also known as 
tabulation, we start by solving the smallest 
subproblems and progressively build up to the larger 
problem. We create a table or array to store the 
solutions to these subproblems. The table is usually 
initialized with base cases or values that represent the 
simplest form of the problem. 

We then iteratively fill in the table, solving each 
subproblem once and storing its solution in the table. 
By using the solutions of previously solved 
subproblems, we can compute the solution for larger 
subproblems until we reach the final problem. 

This approach ensures that each subproblem is 
solved only once, and its solution is readily available 
when needed. It guarantees optimal time and space 
complexity by avoiding redundant computations. 

2. Top-down (Memoizaition) Approach 

In the top-down approach, also known as 
memoization, we start with the original problem and 
recursively break it down into smaller subproblems. 
However, we optimize the approach by storing the 
solutions of already solved subproblems in a 
memoization table or cache. Before solving a 
subproblem, we first check if its solution exists in the 
cache. If so, we retrieve it; otherwise, we solve the 
subproblem and store its solution in the cache for 
future use. 

This approach utilizes the concept of 
memoization, where computed results are 
remembered and reused to avoid recomputation of 
the same subproblems. It helps reduce the overall 
time complexity by avoiding redundant calculations 
and focusing on unique subproblems. 

The top-down approach is often more intuitive 
and easier to implement recursively, as it follows the 
natural structure of the problem. However, it may 
require additional memory to store the cache for 
memoization. 
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Each technique has their own pros and cons: 

Table 1. Top-Down and Bottom-Up comparison 

Top-down Bottom-up 

Pros: 

• Interface errors can be 
more easily identified 
and isolated. 

• When errors occur at 
the top of the program, 
it provides advantages. 

• Early detection of 
design flaws allows 
for timely correction, 
as an initial functional 
module of the program 
is accessible. 

Pros: 

• Creating test 
conditions is 
straightforward. 

• Observing test results 
is convenient. 

• It is particularly 
suitable when defects 
manifest at the lower 
sections of the 
program. 

Cons: 

• Observing the test case 
output can be 
challenging. 

• Emphasizing the 
importance of writing 
stubs, as they 
determine the 
configuration of 
output parameters. 

• When stubs are 
located distant from 
the top-level module, 
selecting test cases and 
designing stubs 
becomes more 
complex. 

Cons: 

• There is no 
representation of the 
working model once 
several modules have 
been constructed. 

• There is no existence 
of the program as an 
entity without the 
addition of the last 
module. 

• From a partially 
integrated system, test 
engineers cannot 
observe system-level 
functions.  It can be 
possible only with the 
installation of the top-
level test driver. 

 

The main steps of solving a dynamic programming 
problem includes: 

1. Determine whether the problem falls under the 
category of dynamic programming. 

2. Choose a concise state expression with the minimum 
required parameters. 

3. Establish the relationships between states and 
transitions. 

4. Perform tabulation (or memoization) to compute and 
store the solutions. 

In general, Dynamic Programming can be employed to 
solve a wide range of problems. These include situations 
where the goal is to maximize or minimize specific quantities, 
counting problems that involve determining the number of 

arrangements satisfying certain conditions, or probability 
problems. Some examples are: 

1. Minimum cost path 

2. Subset sum problem 

3. Knapsack problem 

4. Coin change problem 

5. Longest common subsequence 

C. Longest Common Subsequence (LCS) 

The main description of longest common subsequence 

problem is as follows: 

 

Given two strings, S1 and S2 the task is to find 

the length of the longest subsequence present in 

both of the strings. (A subsequence of a string is a 

sequence that is formed by removing certain 

characters (potentially none) from the original 

string while maintaining the relative order of the 

remaining characters. 

 

 

Input Output 

S1 = “AGGTAB” 

S2 = “GXTAYB” 

LCS = “GTAB” 

S1 = “ABCDGH” 

S2 = “AEDFHR” 

LCS = “ADH” 

 
LCS can be solved with recursive approach utilizing the 

following observation: 

1. Let the input string be array of characters. S1[0…m-1] 
and S2[0…n-1] of lengths m and n respectively. 

2. Let L(S1[0…[m-1], S2[0…n-1]) the length of the LCS 
of the two strings. 

3. The recursive definition of L(S1[0…[m-1], S2[0…n-
1]): 

4. If the last characters of both strings match then 
L(S1[0…[m-1], S2[0…n-1]) = 1 + L(S1[0…[m-2], 
S2[0…n-2]) 

5. Else, L(S1[0…[m-1], S2[0…n-1]) = MAX ( 
L(S1[0…[m-2], S2[0…n-1]), L(S1[0…[m-1], 
S2[0…n-2])) 

 

The above expression in pseudocode: 

function lcs(S1, S2, m, n): 

    if m equals 0 or n equals 0: 

        return 0 

    else if S1[m-1] equals S2[n-1]: 

        return 1 + lcs(X, Y, m-1, n-1) 

    else 

        return maximum of lcs(X, Y, m, n-1) and 

lcs(X, Y, m-1, n) 
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The recursive solution hold these properties: 

1. Optimal Substructure 

L (S1[0…[m-1], S2[0…n-1]) is solved with the help 
of L (S1[0…[m-2], S2[0…n-2]) substructure. 

2. Overlapping Subproblems 

Consider the strings S1 = “BGHT” and S2 = 
“BHUG”. Using the recursive approach defined 
above, the recursion tree gained is as follows. It is 
visible that L(“BGH”, “BHU”) is being calculated 
twice which shows a case of overlapping 
subproblems. 

 
Figure 2. LCS Recursion Tree for "BGHT" and "BHUG" 

 

The properties above are indicators that the longest 
common substring can be solved more efficiently with 
dynamic programming rather than recursive approach. 

Longest Common Sequence (LCS) can become the basis to 
track changes and compare two distinct text-based files. 

III. APPLICATION OF DYNAMIC PROGRAMMING FOR EFFICIENT 

TEXT-BASED FILES COMPARISON 

A. Dynamic Programming Approach to Longest Common 

Subsequence Problem 

The steps to solving Longest Common Subsequence with 
dynamic programming are as follows: 

1. Let S1 and S2 be the strings to compare, each with 
length m and n. 

2. Create a 2D array dp[][] with m rows and n columns. 
The rows represent the indices of S1, meanwhile the 
columns represent the indices of S2.  

3. The first row and column are initialized to 0. 

4. Iterate the row starting with the first row with i = 1, for 
each row, iterate all the columns from j = 1 to n. If 
S1[i-1] equals S2[j-1], set the current element to the 
value of dp[i-1][j-1] +1. Elsem set the current element 
to the maximum between dp[i-1][j] and dp[i][j-1]. 

5. The last element in the dp array is the length of the 
LCS. 

B. Comparing Between Dynamic Programming and 

Recursive Approach for Longest Common Subsequence in 

Python 

The implementation of the pseudocode in chapter 2 for the 
recursive approach to solve LCS: 

 

Figure 3. Recursive LCS Python Implementation 

 

This implementation has complexity O(2n) 

The implementation of the dynamic programming steps to 
solve LCS described in part A of this chapter in python: 

 

Figure 4. dp_lcs Python Implementation (Source: Personal 

Documentation) 

 

This implementation has O(m.n) complexity due to the 
looping of m and n. O(mn) is polynomial, meanwhile O(2n) is 
exponential. 

Both functions are tested with different string length: 

Case 1: “BUGGY” – “BUGGER” 

 

Figure 5. Case 1 common subsequence (Source: Personal 

Documentation) 
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Case 2: “I like fruit” – “I think I like eating fruit” 

 

Figure 6. Case 2 common subsequence (Source: Personal 

Documentation) 

 

Case 3: “DYNAMICPROGRAMMING” – 
“DYAMICAAPROG”  

 

Figure 7. Case 3 common subsequence (Source: Personal 

Documentation) 

 

Case 4: “I think dynamic programming is better than 
recusion” – “Dynamic programming might be better than 
recursion” 

 

Figure 8. Case 8 common subsequence (Source: Personal 

Documentation) 

 
From the test cases above, it is evident that the hypotheses 

that the dynamic programming approach is a lot more efficient 
than the recursive approach. In case 1, where the string 
compared are short, recursive approach still performs well. 
However, as the strings get longer, the recursive approach 
performs badly giving a long execution time. With string 
length > 20, the recursive approach can’t finish its calculation 
in expected time. Meanwhile, the dynamic programming 
approach still performs well. 

 

C. Application of Dynamic Programming for Efficient Text-

Based Files Comparison 

To show the difference between two text-based files, the 
python code implemented in the previous part is extended so 
that it returns the dp matrix using in the processing. 

 

Figure 9. Modified dp lcs in Python (Source: Personal 

Documentation) 

 

 

Figure 10. lcs_string Python Implementation (Source: Personal 

Documentation) 

 
A new function lcs_string(S1, S2) is added, where the 

function first retrieves the dp matrix from the processing of S1 
and S2 by lcs(S1, S2). Next, it searches the right most bottom 
most corner and store the characters one by one in the 
common_sequence string. 

 

Figure 11. show_diff implementation (Source: Personal 

Documentation) 
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show_diff is also implemented to show the difference 
between to strings. 

All of the functions above are used together in a main 
program that accepts two text-based files, and show the 
difference between the two by processing each line. 

 

 

Figure 12. Main Program Impelementation (Source: Personal 

Documentation) 

The main program is used to compare two files to illustrate 
its implementation in version control. 

First test case (simple txt file): 

file1-v1.txt 

 

File2-v2.txt 

 

Output 

 

Second test case (python script): 

lcs.py 

((accessible in https://github.com/chaerla/Text-Based-File-
Comparator)) 

lcs2.py 

((accessible in https://github.com/chaerla/Text-Based-File-
Comparator)) 

Output 

 

 

IV. CONCLUSION 

Text-based file comparison is a critical task that can be 
effectively addressed using dynamic programming techniques. 
By formulating the comparison problem as the longest 
common substring (LCS) problem, we can leverage dynamic 
programming algorithms to achieve efficient and accurate 
results. Compared to the recursive approach, which has a 
complexity of O(n2), the dynamic programming approach 
offers a significant improvement with a complexity of O(mn), 
making it suitable for comparing large texts. 

The implementation of a file comparator using dynamic 
programming showcases its practicality and usefulness. It 
enables the detection of differences between files, paving the 
way for the development of various valuable tools. For 
instance, the comparator can be extended to create a plagiarism 
detector, helping to identify similarities between texts and 
detect instances of content reuse. Additionally, it can serve as a 
foundation for building a version control system, empowering 
developers to track changes, manage revisions, and collaborate 
effectively. 

The efficiency and accuracy provided by dynamic 
programming in text-based file comparison open up 
possibilities for enhanced data analysis, content management, 
and decision-making. As technology advances, further 
advancements in file comparison algorithms and tools can be 
expected, ultimately leading to improved productivity and 
effectiveness across multiple domains. 

VIDEO LINK AT YOUTUBE  

https://youtu.be/YW8qu0iSze8 

 

https://github.com/chaerla/Text-Based-File-Comparator
https://github.com/chaerla/Text-Based-File-Comparator
https://github.com/chaerla/Text-Based-File-Comparator
https://github.com/chaerla/Text-Based-File-Comparator
https://youtu.be/YW8qu0iSze8
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