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I. INTRODUCTION 

In this modern world, the environment in which transactions 
are conducted has been revolutionized by digitalization through 
the E-Commerce industry. The rise of online shopping has led 
to a significant increase in the number of e-commerce websites, 
making it easier for customers to search for their needs and 
purchase products or services online. The global E-Commerce 
market is estimated to be one of the most profitable, as it is 
projected to reach 1,356.88 billion USD in revenue by 2025 in 
the US alone [1]. As the data in the e-commerce industry grows 
exponentially, demands of reliable personalized 
recommendations systems have arisen.  

One approach is to build a data driven system by analyzing 
frequent patterns in customer transactions. This can be done 
through applying machine learning algorithms to predict items 
that might be of interest based on user behavioral data. An 
effective method for achieving this is market basket analysis, 
which involves identifying items that are frequently purchased 
together. In order to attain these frequent item sets, a form of 
unsupervised machine learning such as Apriori is used. 

Apriori is a popular algorithm for Association Rule 
Learning to find frequent item sets in large datasets. It is based 
upon a branch and bound algorithm in which the algorithm 
generates candidate item sets and prunes infrequent ones. The 
algorithm first scans the dataset to identify frequent single 
items, then it iteratively generates larger item sets and prunes 
them based on their frequency. This process continues until no 
new frequent item sets can be found. 

These data-driven approaches are increasingly popular in e-
commerce and have been shown to improve customer 
engagement and sales. A study by McKinsey & Company 

found that personalization based on customer data can increase 
sales by up to 15% [2]. Additionally, according to a survey by 
Accenture, 91% of consumers are more likely to buy from 
companies who make personalized offers and suggestions [3]. 
E-commerce companies are now investing heavily in data 
analysis and machine learning to develop recommendation 
systems that provide a personalized shopping experience for 
customers. In this context, algorithms such as Apriori are 
becoming increasingly important for finding frequent item sets 
and generating recommendations based on customer behavior. 
In this paper, we analyze the effectiveness of a branch and 
bound approach with Apriori algorithm for finding frequent 
item sets in an e-commerce recommender system. 

II. FUNDAMENTAL THEORY 

A. Branch and Bound 

The branch and bound algorithm is a general optimization 
technique that is used to solve combinatorial problems. The 
basic idea behind this algorithm is to systematically search 
through all possible solutions while keeping track of the best 
solution found so far, and to prune branches of the search tree 
that are guaranteed to not contain an optimal solution. 

The general steps for the branch and bound algorithm are as 
follows: 

1. Initialization: Set up the initial search space and define 
the initial upper bound on the objective function. 

2. Branching: Divide the search space into smaller 
subproblems and choose one of the subproblems to 
explore. 

3. Lower bounding: Compute a lower bound on the 
objective function for the current subproblem. 

4. Pruning: If the lower bound on the current subproblem 
is greater than the current upper bound, then prune the 
current subproblem and move back up the search tree. 
Otherwise, continue to explore the current 
subproblem. 

5. Termination: Stop the search when all subproblems 
have been explored or when a satisfactory solution has 
been found. 

In the context of the Apriori algorithm, the branch and 
bound technique is used to prune search space and speed up the 
process of identifying frequent item sets. The algorithm 
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identifies all frequent item sets in a dataset by using a candidate 
generation process to incrementally build itemset of increasing 
size, and then pruning those that do not meet the minimum 
support threshold. By using branch and bound, the algorithm 
can eliminate many of the candidate item sets early in the 
process, making it more efficient. 

B. Association Rule Learning 

Association Rule Learning is a data mining technique that 
is used to discover underlying patterns and relationships 
between variables in a set of data by identifying items that 
frequently occur together. Association Rule Learning requires 
transactional data where transactions consist of sets of items 
purchased or viewed by a customer. The main premise of 
association rule learning in market basket analysis is to 
conclude, "if a customer buys product A, they are likely to also 
purchase product B". Commonly used metrics in association 
rule learning are: 

1. Support: Measures the frequency with which the 
itemset appears in the dataset. It is calculated as the 
ratio of the number of transactions containing the 
itemset to the total number of transactions. 

 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) =  
(# 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋)

(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠)
  

  

 Note: ‘#’ denotes “Number of” 

2. Confidence: Measures the likelihood that an itemset Y 
will be purchased when itemset X is purchased. It is 
calculated as the ratio of the number of transactions 
containing both X and Y to the number of transactions 
containing X. 
 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =
(# 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑋 𝑎𝑛𝑑 𝑌)

(# 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋)
 

 

3. Lift: Measures the extent to which the occurrence of 
one itemset is dependent on the occurrence of another 
itemset. It is calculated as the ratio of the observed 
support of both item sets to the expected support if 
they were independent of each other. 

𝐿𝑖𝑓𝑡(𝑋 → 𝑌) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) × 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑦)
 

 

C. Apriori 
Apriori is a bottom-up approach that discovers frequent 

item sets by identifying the support of each item in the dataset 
and then iteratively generating larger and larger candidate item 
sets based on a minimum support threshold. The basic idea 
behind Apriori is that if an itemset is frequent, then all its 
subsets must also be frequent. For example, if {A, B} occurs 
frequently, then both {A} and {B} must also occur frequently. 
This property is known as the "Apriori principle" and forms the 
basis for the algorithm. 

The Apriori algorithm works in two main phases: 

1. Generation of Frequent Item Sets: In the first phase, 
the algorithm scans the dataset to determine the 
support of each item in the dataset. It then generates 
candidate item sets of length two by combining 
frequent 1-item sets. The support of each candidate 
itemset is then computed and those that meet the 
minimum support threshold are retained as frequent 2-
itemsets. This process is repeated to generate frequent 
k-item sets until no more frequent item sets can be 
generated. The following are the step by step of the 
first phase: 

a. Initialize the minimum support threshold. 

b. While the number of frequent item sets is 
greater than 0: 

c. Generate candidate item sets of length k from 
the frequent item sets of length k-1. 

d. Count the support for each candidate. 

e. Prune each candidate that is below the 
minimum support threshold. 

f. Repeat the process until no more frequent 
itemset can be found. 

g. Return the frequent item sets. 

2. Generation of Association Rules: In the second phase, 
association rules are generated from the frequent item 
sets by finding all possible non-empty subsets of each 
frequent item set and computing the confidence of 
each rule. Rules with a confidence greater than or 
equal to a minimum confidence threshold are retained 
as strong association rules. The following are the step 
by step of the second phase: 

a. Initialize the confidence threshold. 

b. For each frequent item set X generated by 
phase one: 

c. Generate all possible non-empty subsets of 
X. 

d. For each potential antecedent A, calculate the 
confidence of the rule A → (X-A). The 
consequent (X-A) is the set of items in X that 
are not in A. 

e. Prune each candidate that is below the 
minimum confidence threshold. 

f. Repeat the process for all frequent item sets. 

g. Return the association rules. 

III. IMPLEMENTATION 

In this section, implementation of Apriori algorithm 
towards E-Commerce clickstream data will be conducted. An 
analysis will also be presented to evaluate the usability of the 
information collected and the performance of the algorithm. 
This section aims to answer the following questions: 

1. What does the data look like? 
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2. Which steps are taken to prepare the data for 
Association Rule Learning? 

3. How does the Apriori algorithm work in 
implementation? 

 

A. Tools and Environment Specification 

The tools, both hardware and software, used to implement 

Association Rule Learning are specified as the following: 

 

1. Hardware 

a. Machine: Dell XPS 9320 

b. Processor: Intel Evo i7 

c. Core: 16 

d. Threads: 12 

e. RAM: 32GB 

2. Programming Language 

a. Python 

b. Jupyter Notebook 

3. Library 

a. Pandas 

b. Numpy 

c. Matplotlib 

d. Mlxtend 

 
B. Dataset 

In this paper, two E-Commerce clickstream data are used to 
analyze user behavioral pattern on viewing and conducting 
purchases. The datasets used for this analysis are: 

1. Retail Rocket Recommender System Dataset: This 
dataset consists of user behavioral data collected from 
a real-world e-commerce website. The behavior data 
consists of clickstream events classified as views, add 
to cart, or transactions that were collected over the 
period of 4.5 months. The dataset itself contains 
2756101 rows for each clickstream, with 1407580 
unique customers and only 11719 (0.83%) conducting 
a purchase. This dataset will be mainly used to analyze 
user viewing patterns as transactions only occur less 
than 1% of the time. Hence, user viewing patterns can 
be recognized through Association Rule Learning. 
From this point on forwards, this dataset will be 
referred to as the first dataset. A sample of this dataset 
is as presented on Table I. 

TABLE I. USER VIEWING SAMPLE DATA 

timestamp visitorid event itemid 

1433221332117 257597 view 355908 

1433224214164 992329 view 248676 

 

2. UK Retailer E-Commerce Dataset: This dataset 
retrieved from UCI Machine Learning Repository 
consists of transactional data over the course of a year 
(2010-2011) from a UK Retailer. Each row is a single 
item transaction consisting of the invoice number, 
stock code, date, product description, quantity, unit 

price, customer id, and the country of the customer. 
This dataset will be used to analyze user purchases and 
to find association rules to recommend items of 
interest for identified item sets. From this point on 
forwards, this dataset will be referred to as the second 
dataset. A sample of this dataset is as presented on 
Table II. 

TABLE II. USER PURCHASES SAMPLE DATA 

InvoiceNo StockCode Description InvoiceDate CustomerID 

536365 85123A 

WHITE 
HANGING 
HEART T-
LIGHT HOLDER 

12/1/2010 
8:26 

17850 

536365 71053 
WHITE METAL 
LANTERN 

12/1/2010 
8:26 

17850 

 

C. Data Preparation 

 Prior to training the Apriori algorithm on both transactional 
data, proper steps of preprocessing need to be conducted to 
prepare the data in the correct format. A reduction of the search 
space is also done to simplify the analysis. 

 The first dataset has the “timestamp” feature containing the 
time a viewing event occurred in a UNIX time format. This is 
then converted into a more human readable form in the form of 
standard datetime format (YYYY-MM-DD). After the 
conversion, an aggregation is done to group the viewings data 
by visitor ID and further grouped by viewings within a one-
week time window. This is done to collect all the viewings data 
for each unique user in the given period. A user may have more 
than one row of data if the viewings are separated for more than 
one week apart. The time window of one week is chosen as a 
user may have different interests after one week of scouring the 
website, which is purely assumptive. 

 After processing the first dataset, the second dataset is also 
aggregated. Each row is grouped by InvoiceNo representing a 
single purchase. This is done to collect each item purchased at 
a time. 

 After properly grouping the viewings and purchases data, 
one of its columns should already be in a transactional format 
(“itemid” for the first dataset, “description” for the second 
dataset). This can then be extracted and converted to a list of 
lists containing different transactions that occurred in each 
dataset. 

 At this point, the first dataset contains around 1.5 million 
transactions while the second contains roughly 22.000 
transactions. To simplify the analysis, the first dataset is 
truncated to only contain the same number of rows as the 
second dataset. This is also done to avoid over allocation of 
memory caused by combinatorial explosion in both phases of 
the Apriori algorithm. A divide and conquer technique could be 
applied to solve this problem by training the first dataset in 
batches, but for the sake of time and simplicity, this paper will 
only focus on generating association rules based on the first 
22.000 rows of viewing data. 

 Before feeding the Apriori algorithm with both the 
transactional data, it needs to be encoded with Transaction 
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Encoding, which works similarly to One-Hot Encoding by 
creating binary columns for each singular items and marking it 
as true if a transaction contains it, false if it does not. With the 
datasets encoded, it is now in a form ready to be processed for 
frequent item set mining. 

D. Training the Apriori Algorithm 

 Referring to the explanation of the Apriori algorithm in 
section IIC, the model works in two phases. Phase one to 
identify the frequent item sets, and phase two to identify the 
association rules. In phase one, the algorithm traverses the 
search space similar to a breadth-first search, with the cost 
function being the support of the current item set, and the 
bounding function is determined by the minimum threshold. 
The searching stops once there are no item sets left that meet 
the minimum support threshold. The solution node in the tree 
search space is the leaf node that represents the itemset which 
satisfies the minimum support threshold. There can be multiple 
solution nodes in the tree search space. Each solution node 
corresponds to a frequent itemset that meets the minimum 
support threshold. The following provides the Apriori phase 
one implementation in pseudocode: 

input 

D: a list of transactions where each 
transaction is a list of items 

minSup: a minimum support threshold for an 
item to be considered frequent 

output 

L1: Dictionary that holds the frequent 1-
itemsets 

function 

frequent_1_itemsets(D, minSup): 

    L1 = {} 

    for transaction in D: 

        for item in transaction: 

            if item not in L1: 

                L1[item] = 0 

            L1[item] += 1 

    // Filter out items with support count 
less than minSup 

    L1 = {k:v for k,v in L1.items() if v >= 
minSup} 

    return L1 

input 

L: a list of frequent itemsets from the 
previous level represented as a list of 
items. 

output 

Ck: candidate itemsets 

function 

apriori_gen(L): 

    Ck = {} 

    for i in range(len(L)): 

        for j in range(i+1, len(L)): 

         // If the first k-1 items in 

         // itemset i are equal to the first 

         // k-1 items in itemset j 

            if L[i][:-1] == L[j][:-1]: 

            // Create a candidate itemset 

            // by combining itemsets i and j 

                Ck_item = L[i] + [L[j][-1]] 

            // If any subset of Ck_item is 

            // not in L, skip to next 

            // iteration 

                if 
has_infrequent_subset(Ck_item, L): 

                    continue 

                Ck.add(Ck_item) 

    return Ck 

input 

L: a list of frequent itemsets represented 
as a list of items. 

Ck: candidate itemsets 

output 

flag: True if subset Ck it not in L, false 
otherwise 

function 

has_infrequent_subset(Ck_item, L): 

    for item in Ck_item: 

        subset = Ck_item - [item] 

        if subset not in L: 

            return True 

    return False 

input 

D: a list of transactions where each 
transaction is a list of items 

minSup: a minimum support threshold for an 
item to be considered frequent 
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output 

frequentItemsets: all frequent itemsets 
found in the search space 

function 

PhaseOneApriori(D, minSup): 

    L1 = frequent_1_itemsets(D, minSup) 

    L = L1 

    k = 2 

    while L is not empty: 

        // Generate candidates 

        Ck = apriori_gen(L) 

        for transaction in D: 

            for candidate in Ck: 

                if candidate is subset of 
transaction: 

                    candidate.support += 1 

        Lk = {} 

        for candidate in Ck: 

            // Pruning step 

            if candidate.support >= minSup: 

                Lk.add(candidate) 

        L = Lk 

        k += 1 

    return all frequent itemsets found 

 

 Phase one of the Apriori algorithm successfully generated 
over 1622 frequent item sets for the first dataset using a 
minimum support of 0.00025 and 856 for the second dataset 
using a minimum support of 0.01. It should be noted that the 
minimum supports were first selected arbitrarily and then 
further refined to generate a sufficient amount of frequent item 
sets. 

 Phase two Apriori is focused on generating association rules 
from the frequent item sets obtained in phase one. The process 
involves iterating over the frequent item sets generated in phase 
one and generating all possible non-empty subsets of each 
frequent itemset. These subsets are referred to as the antecedent 
of the association rule. The remaining items in the frequent 
itemset that are not part of the antecedent form the consequent 
of the association rule. Similar to phase one, the searching is 
done in a breadth-first manner, with the algorithm exploring 
different combinations of antecedents and consequents to 
generate potential association rules. For each frequent itemset, 
the algorithm calculates various metrics such as support, 
confidence, and lift to evaluate the strength of the association 
rule. During the search process, the algorithm prunes 
association rules that do not meet user-defined minimum 

support and confidence thresholds. The following is the 
pseudocode implementation for phase two Apriori: 

input 

itemset: a set of items 

size: size of the subset to be extracted 

output 

subsets: subset of the itemset 

function 

generate_subsets(itemset, size): 

if size == 1: 

    for item in itemset: 

        subsets.append([item]) 

else: 

    for i in range(len(itemset) - size + 1): 

        current_item = itemset[i] 

        remaining_items = itemset[i+1:] 

        subsubsets = 
generate_subsets(remaining_items, size - 1) 

         

        for subsubset in subsubsets: 

            subsets.append([current_item] + 
subsubset) 

 

return subsets 

input 

frequentItemsets: a list of frequent 
itemsets generated from phase one 

minSup: a minimum support threshold for an 
item to be considered frequent 

minCon: a minimum confidence threshold for 
an association rule to be considered 
significant 

output 

associationRules: a list of association 
rules 

function 

PhaseTwoApriori(frequentItemsets, minSup, 
minCon): 

    associationRules = {} 

    for itemset in frequentItemsets: 

        for i in range(1, len(itemset)): 
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            antecedents = 
generate_subsets(itemset, i) 

            consequents = 
generate_subsets(itemset, len(itemset) - i) 

            for antecedent in antecedents: 

                for consequent in 
consequents: 

                    rule = antecedent + 
consequent 

                    support = 
calculate_support(rule) 

                    confidence = 
calculate_confidence(rule) 

                    lift = 
calculate_lift(rule) 

                    if support >= minSup and 
confidence >= minCon:                    
associationRules.add((antecedent, 
consequent, support, confidence, lift)) 

 

return associationRules 

 

 After training the Apriori algorithm on the given dataset, the 
frequent item sets and association rules generated will have 
been collected and may infer commonalities in viewing or 
purchase patterns of customers. 

IV. ANALYSIS 

This section aims to answer business-oriented questions 
from the application of Apriori algorithm to both transactional 
data such as the following: 

1. What are the frequent items viewed together? 
2. What are the frequent items bought together? 
3. What can be recommended to a customer that views 

an item with the highest support? 
4. What can be recommended to a customer that bought 

an item with the highest support? 
5. How well does the Apriori algorithm perform in 

finding frequent item sets with the given minimum 
support threshold? 

 The Apriori algorithm implemented in this paper is 
supported by the mlxtend library. However, this disables the 
ability to do white box testing and see the internal workings of 
the Apriori algorithm, therefore a case from one of the datasets 
will be taken to demonstrate how the Apriori algorithm 
traverses the search space and prunes each subtree that does not 
meet the minimum support threshold. 

A. Frequent Item Sets 

The Apriori algorithm successfully generated over 1622. 

frequent item sets on the first dataset with a minimum support 

of 0.00025 and 856 on the second dataset with a minimum 

support of 0.01. Among them, the most frequent item has the 

support of 0.001742 on the first dataset and 0.090594 on the 

second dataset. The following can be concluded from frequent 

item sets analysis: 

 

1. Item with ID of 187946 has the most support of 

viewings in the first dataset. 

2. Item “WHITE HANGING HEART T-LIGHT 

HOLDER” has the highest support among purchase 

data in the second dataset. 

3. Apriori took 25 seconds to process the first dataset, 

iterating over 60.000 combinations. 

4. Apriori took 1 minute and 4 seconds to process the 

second dataset, iterating over 200.000 combinations. 

5. All frequent item sets found in the first dataset are of 

length one, meaning the item categories are either too 

sparse or not correlated with each other. 

6. Over 700 frequent item sets are found in the second 

dataset, with 220 having length of more than one. This 

means that some recommendations can be made for 

purchases of select items. 

B. Generated Association Rules 

After frequent item sets are found, association rules can be 
generated to collect behavioral pattern of customers. The 
following are the information inferred from the generated 
association rules: 

1. The first dataset does not contain any significant 
association rules with a minimum threshold of 0.01. 

2. Over 560 association rules are found for the second 
dataset, with four having lengths two or more in the 
consequent side of the rule. 

3. The rule “GREEN REGENCY TEACUP AND 
SAUCER” → “ROSES REGENCY TEACUP AND 
SAUCER” is the most prominent, having a confidence 
metric of 0.76 with 20.22 lift. 

4. Association rules generation only took 0.1 seconds, 
which is quicker than frequent item sets searching in a 
factor of 640. 

C. Example 

Suppose an item “ALARM CLOCK BAKELIKE GREEN” 

from the second dataset. In the purchase data, it is found that 

the item is involved in 806 out of 22187 transactions. This 

yields a support score of 0.03632. Given a minimum support 

threshold of 0.01, the Apriori algorithm would have saved this 

item as a frequent-1-item set and continued the searching for its 

child node. Suppose another item “ALARM CLOCK 

BAKELIKE RED” which is contained in 904 transactions. This 

gives a support score of 0.04074, which is also above the 

minimum threshold. Out of 806 transactions containing 

“ALARM CLOCK BAKELIKE GREEN” and 904 transactions 

containing “ALARM CLOCK BAKELIKE RED”, 533 of 

which contain both items at the same time, yielding a joint 

support score of 0.02. Therefore, this will still be considered as 

a frequent itemset and is a candidate for an association rule. 
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Say the Apriori tree searches for an itemset that contains 

“ALARM CLOCK BAKELIKE GREEN”, “ALARM CLOCK 

BAKELIKE RED”, and “JUMBO BAG RED RETROSPOT”. 

There are only 63 transactions that contain all three items at the 

same time, giving a support score of 0.00284. Considering that 

the support is lower than the given threshold of 0.01, the itemset 

is pruned from the search tree and will not be considered as a 

frequent itemset. 

In phase two, the itemset “ALARM CLOCK BAKELIKE 

GREEN” and “ALARM CLOCK BAKELIKE RED” is 

checked and calculated for the confidence metric. Given the 

minimum confidence of 0.1, the rule “ALARM CLOCK 

BAKELIKE GREEN” → “ALARM CLOCK BAKELIKE 

RED” is considered as a strong enough association rule with 

0.66129 confidence. The reverse “ALARM CLOCK 

BAKELIKE RED” → “ALARM CLOCK BAKELIKE 

GREEN” is also considered a valid association rule, with 

calculated confidence metric of 0.5896. With this in mind, a 

customer that purchased “ALARM CLOCK BAKELIKE 

GREEN” may be recommended an “ALARM CLOCK 

BAKELIKE RED” product and vice versa, with an argument 

that both products are analyzed to be frequently purchased 

together. 

V. CONCLUSION 

The Apriori algorithm is a powerful branch and bound 

approach used to discover frequent item sets from transactional 

data. By analyzing patterns of item occurrences in relation to 

each other, the algorithm enables the extraction of valuable 

information regarding customer behavior and preferences. 

In its process, the Apriori algorithm goes through two 

phases. One to search for item sets that occur frequently 

together and another to generate association rules with a given 

minimum confidence. These two phases implement a form of 

branch and bound method in order to prune the leaf nodes that 

do not meet the minimum required threshold. 

Through a case study using purchase data, several important 

findings were revealed. In the first dataset, item 187946 

exhibited the highest support of viewings, indicating its 

popularity among customers. However, no significant 

association rules were discovered, suggesting a lack of strong 

relationships between items in this dataset. 

In the second dataset, the item "WHITE HANGING HEART 

T-LIGHT HOLDER" emerged as the most supported item 

among purchase data. The Apriori algorithm performed well in 

processing both datasets, taking 25 seconds and 1 minute and 4 

seconds, respectively. Over 700 frequent item sets were found 

in the second dataset, with 220 of them having a length greater 

than one, indicating potential recommendations for purchasing 

specific items. 

Overall, this analysis demonstrates the effectiveness of the 

Branch and Bound approach with the Apriori algorithm in 

uncovering frequent item sets and association rules for an E-

Commerce Recommender System. The findings provide 

valuable insights into customer preferences and potential 

recommendations for enhancing the user experience and 

driving sales in e-commerce. Future research can further 

explore these findings and leverage them to optimize 

recommendation systems and marketing strategies in the e-

commerce industry. 

VIDEO LINK AT YOUTUBE 

The following video contains explanation of the 
implementation in code for this paper: 
https://www.youtube.com/watch?v=qUBqc54OIw4  
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