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Abstract—Square roots have always been considered a 

relatively computationally intensive task for the CPU compared 

to other commonly used mathematical operations. The most 

widely used method of calculating square roots is by using 

Newton’s method. This paper is written to discuss the already 

existing approaches in calculating square roots and determine 

which is best, starting from varying algorithm techniques to 

utilizing already available resources/instructions of the CPU. 
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I.  INTRODUCTION 

A square root is a mathematical function or operation, 
which defines a number y such that y2 = x, y is the square root 
of x. It is one of the most fundamental and commonly used 
mathematical functions that is in use in computer algorithms to 
this day, including but not limited to distance calculation, 
vectors, etc. Without a fast way to compute square roots, real-
time computation in programs such as games would not be 
possible. The question is how do CPUs calculate square roots 
fast enough to necessitate real-time compute? 

Modern CPUs have a component called FPU (Floating-
Point Unit) that assists the CPU in floating-point compute. This 
unit is extremely important, as without the FPU, the CPU 
would have a hard time calculating floating-point compute, 
thus making it slow or even impossible for real-time uses. At 
low-level, the CPU uses instructions dedicated for square root 
operations, such as FSQRT, SQRTSS, SQRTSD, and so on. 

There are algorithms with various techniques/approaches to 
calculate the square root of a number. Those are: Newton’s 
Method/Babylonian Method/Heron’s Method, Bisection 
Search, etc. 

II. THEORETICAL BASIS 

A. Brute Force 

Brute-forcing, known as the naïve algorithm, operates 
exactly like its name. This type of approach brute-forces (keeps 
calculating) until the algorithm is satisfied with their defined 
parameters. Typically, the algorithm stops when it reaches the 
maximum number of iterations done by the algorithm, which 
can either be user-defined or a constant variable defined by the 
developer. At its core, brute-forcing does not inherently care 
whether the result is the most optimal result, it just stops 
depending on the parameters defined. 

This results in varying accuracy depending on the 
parameters. In its nature it does not know and cannot know 
anything beforehand, therefore it must find the appropriate 
approach to the result on its own. This makes brute-forcing one 
of, if not, the slowest algorithm of the bunch, but with the 
proper approach (and enough time), it can be the most accurate 
of them all. 

B. Babylonian Method 

YBC (Yale Babylonian Collection) 7289 is an Old 
Babylonian mathematical clay tablet. The identity of the 
maker, the provenance, and the exact date is unknown. They 
correctly calculated the square root of 2 to three sexadecimal 
digits after 1. 

 

Figure 1 YBC 7289 from [2] 

 

A square with its two diagonals, and on the side is the 
number 30. The diagonals have the numbers 1, 24, 51, 10, 42, 
25, 35. At first glance, it is unclear what the numbers mean. It 
has been deciphered that the numerical base used in this tablet 
is sexagesimal (base 60). The number 30, which represents the 
side length of the square, on the sexagesimal system is the 
reciprocal of 2 (60/2 = 30) (the square root of 2). The numbers 
1;24;51;10 are in sexagesimal figures, and represents the 
decimal number 1.41421296… (1 + 24/60 + 51/602 + 10/603) 
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that is only off by less than one part in two million. The 
numbers 42;25;35 represent the length of the diagonal with the 
side length of 30, which is 42.4263889… (42 + 25/60 + 
35/602). 

Although there is a missing piece of information from the 
tablet, and that is the place value of each digit. Under the same 
interpretation as before (30/60 = 1/2), the number on the 
diagonals, when done under the same process (0;42;25;35), 
equals to 0.70711… (0 + 42/60 + 25/602 + 35/603), which is the 
approximation of 1/√2, also off by less than one part in two 
million. 

From this information, it’s not exactly obvious how the 
Babylonian method is derived from the clay tablet. When 
visualized as a square: 

 

Figure 2 Visualization of the method, taken from [2] 

 

Suppose we want to evaluate the side of the square, which 
is the square root, it can be approximated as: 

x2 = approx2 + bit 

which can be represented geometrically by the sum of a 
square with sides approx and bit. With bit as a rectangle with 
the side approx, cut this in two lengthwise. Hence 

x = √(a2 + B) ≈ a + ½ B/a 

That is just for new approx, but for the area of the little 
square missing on the bottom right corner, we would require a 
new approximation. This is done by subtracting approx2 with 
bit, instead of adding. Thus, a new approximation is revealed to 
be: 

x = √(a2 - B) ≈ a - ½ B/a 

Let’s say we are trying to get the square root of 2. It goes as 
follows: 

√2 = √((3/2)2 – ¼) ≈ 3/2 - 1/2 × 1/4 × 2/3 = 17/12 

17/12 works out to be 1.4167, which is not far off from the 
square root of 2, but it is close enough. In the sexagesimal 
system, the number 17/12 is represented as 1;25. If we are to 
apply the procedure again: 

√((17/12)2 – 25/602) = √((1;25)2 – 0;00 25)  ≈ 1;24 51 10 35 
17… 

If we truncate to 1;24 51 10, we get our original solution 
from the clay tablet. 

Heron’s iterative method, which is also known as the 
aforementioned Newton’s method, is an iterative method of the 
Babylonian method. The accuracy improves with more 
iterations. 

For √a, Heron’s method to calculate the square root would 
be: 

xn+1 = ½ (xn + a/xn) 

where xn is the n-th iteration value of the square root 
approximation, with the initial value x0. The initial value does 
not matter, but the further the initial value is from the square 
root, the more iterations are required to achieve the same level 
of accuracy as with an initial value closer to the square root. 

For example, we would like to calculate the square root of 
76. The closest perfect square to 76 is 64, and the square root 
of 64 is 8. Therefore, the square root of 76 is between 8 and 9. 

x0 = 8 

x1 = ½ (8 + 76/8) = 8.75 

x2 = 8.71785714 

x3 = 8.717797887…  

and so on. 

Heron’s iterative method is quadratically convergent, which 
means with every iteration, the error is approximately the 
square of the error in the previous step. In other words, the 
number of correct digits of the approximation roughly doubles 
with each iteration. With the correct answer being 8.71779789, 
in x1, the number of correct digits (including 8) is 2. In x2, it is 
4, and so on and so forth. 

C. Bisection Method 

Bisection method is a root-finding method of a continuous 
polynomial function. It separates the interval and subdivides 
the interval in which the square root lies. By narrowing the gap 
between the positive and negative intervals, it gets closer to the 
correct answer. It is also known as the binary search method. 

Bisection method works iteratively, just like previous 
methods. It’s still relatively slower for real-time use (and 
compared to the Babylonian method), but it is faster than brute-
forcing. 

For any continuous function f(x): 

• find two points a and b such that f(a) * f(b) < 0, 

• find the midpoint t, and t is the root if f(t) = 0 (or 
converges to zero). If it does not, 

• divide the interval [a, b], if f(t) * f(a) < 0, the root 
is between t and a. Conversely, if f(t) * f(b) < 0, 
the root is between t and b. Repeat until f(t) = 0. 

When the algorithm stops is usually determined by a pre-
defined accuracy variable by getting the difference between t2 
and x (the value which square root is to be determined). This 
provides a varying compromise between accuracy and time, 
and its flexibility allows developers to finely tune the algorithm 
to fit their use case. 
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D. Built-in CPU instruction 

This is more of using what is already provided by the CPU 
rather than an algorithm technique, per se. Modern CPUs have 
what is called an FPU, which is already explained in part I. The 
FPU is responsible for floating-point arithmetic, and that 
includes square root calculations. By using the built-in CPU 
instruction, we can remove all the overhead from previous 
methods and provide a quick result. 

Modern CPUs have a SIMD (Single Instruction Multiple 
Data) instruction sets, which provide data-level parallelism on 
a vector of data, executed in parallel with a single instruction as 
opposed to multiple instructions. There are different SIMD 
instruction sets available on modern CPUs, such as SSE 
(Streaming SIMD Extensions), SSE2, SSE3, SSE4, AVX, 
AVX2, AVX512, and so on. SSE and its subsequent successors 
have their own floating-point registers XMM0 through XMM7, 
totaling 8 registers. These registers are 128-bit wide, which 
means it can fit 4 single-precision floating-point numbers, 2 
64-bit double-precision floating-point numbers, 2 64-bit 
integers, 4 32-bit integers, 8 16-bit short integers, or 16 8-bit 
characters. 

SSE was superseded by AVX, which expanded the registers 
to 256-bit registers, and named YMM, with XMM being the 
lower 128-bit register of a single 256-bit YMM register. This 
allows the CPU to store 8 32-bit single-precision floating-point 
numbers and 4 64-bit double-precision floating point numbers, 
instead of 4 and 2 respectively, allowing for even more 
parallelism. AVX2 is the successor to AVX, which expands 
most integer instructions to 256-bit and adds several new 
instructions. 

Due to how wide the instructions are, they generate more 
heat and consume more power than other regular CPU 
instructions. Using AVX instructions for real-world 
applications, which tend to use AVX instructions repeatedly, 
may lead to a higher power consumption, therefore lower 
power efficiency. 

III. APPROACHES TO CALCULATE SQUARE ROOTS 

With the information in part II, we have multiple ways to 
calculate square roots, one brute-force, two algorithms with 
different approaches, and one algorithm using the built-in 
AVX(2) instruction in the CPU. 

All these algorithms were run by an Intel Core i7-10750H 
with a 5 GHz single-core boost. Results may vary in different 
processors and compiler optimization flags, but the difference 
between the algorithms should be the same across different 
processors. The link to the source code is provided in this 
paper. 

First, the control variable, which is using the built-in sqrt 
method in C++ is determined. Specifically for this single test, 
the randomly determined double-precision floating-point 
number 12837.3284290217631 is used, with the control 
variable (the square root of the number) being 
113.301934798227364. All tests will have the decimal 
precision set to 18, which means 18 digits after the decimal 
point. 

With the control variable set, there are 5 series of tests, each 
using different algorithms, that run a million (1.000.000) times 
to put into scale the differences between the algorithms and (at 
least attempt to) simulate real-world use which does these 
calculations multiple times. Each of these tests have a 100ms 
interval between them, to let the CPU “rest” between each test. 
This lowers the variability between test suites. 

First test, the “native” test, which uses the built-in C++ 
function to compute the square root. 

Type NATIVE: 5.5322 ms 

 

It takes 5.53ms for the C++ function to compute the square 
root 1 million times. Dividing that by 1 million, we get 5.53 
nanoseconds per iteration. This is more than enough for real-
time compute. The “native” test being the control variable 
means we do not need to compare the result of this with the 
control variable. 

Second test, the brute-force method. The first thing the 
algorithm determines is the closest square to the number. If the 
number is a perfect square number, and the closest square 
equals the number, the algorithm stops. If not, the algorithm 
continues. 

Suppose the closest square number is x and the control 
variable (the square root we’re looking for) is y. If x2 is less 
than y, the algorithm adds the step variable 0.1 to x until x2 is 
greater than or equal to y. Once the process stops, x is 
subtracted by 0.1, and the step variable is divided by 10. The 
process repeats for a set maximum number of iterations, in this 
case 10 iterations. 

How does the algorithm fare? 

Type BRUTEFORCE: 388.592 ms 

 

It certainly does not look good for the brute-force 
algorithm. With 1 million iterations, it almost reached 500 
milliseconds, which translates to 0.38 microseconds per 
iteration. Considering the time complexity of the algorithm of 
O(n), the lower the input number, the faster the algorithm goes. 
This algorithm is certainly not suitable for real-time use. 

How far off is the result? 

Control: 113.301934798227364 

Brute force: 113.301934798199952 

Difference: 2.74127387456246652e-11 

 

The algorithm overshoots the control variable by 
99.9999921%. This is a more than acceptable margin of error. 
In just 10 iterations, it can provide such an accurate 
approximation. 
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Moving on to the third, the Babylonian method, or (in this 
case) more accurately, Heron’s iterative method. In this 
implementation, it works by setting the desirable accuracy 
variable. 

Suppose we have the same variables as the previous test. 
The accuracy variable is then compared to the difference 
between x2 and y. If the difference is ever so slightly greater 
than the accuracy variable, then we have acquired our answer. 

If that condition has not been reached yet, the algorithm 
changes x to be equal to ½ (x + y/x). The algorithm will repeat 
until that condition is true. 

So how does it fare against other algorithms? 

Type BABYLONIAN: 117.265 ms 

 

This method is 331% faster than the brute-force method, 
taking 0.117 microseconds per iteration. With a time 
complexity of O(log(log(n/m)), where n is the input and m is 
the permissible margin of error, the algorithm is faster than the 
brute-force method. How accurate is it, though? 

Control: 113.301934798227364 

Babylonian: 113.301934798227393 

Difference: -2.84217094304040074e-14 

 

It is much more accurate than the brute-force method, while 
massively reducing the time spent calculating. Although 
promising, it is simply not enough to necessitate real-time use. 

Fourth, the Bisection method. In this implementation, there 
are 3 declared variables, left, right, and mid. An additional 
accuracy variable is also defined like the previous method. 

Suppose x is the result and y is the control variable to 
approach to by the algorithm. What the algorithm does first is 
define left as zero, right as the input number, and mid as (left + 
right)/2. 

While the difference between x2 and y is less than the 
accuracy variable, the algorithm does three things: 

• If mid2 is greater than the input number, right 
equals mid. 

• Else, left equals mid. 

• mid is recalculated by the same formula as before 
((left + right)/2). The algorithm repeats until the 
defined condition is satisfied. 

How is the performance? 

Type BISECTION: 253.518 ms 

 

The algorithm is slower than the Babylonian/Heron’s 
method, while being faster than the brute-force algorithm. 
Time taken per iteration is around 0.253 microseconds, which 

puts it nicely in the middle, between the Babylonian method 
and the brute-force method. 

 

Control: 113.301934798227364 

Bisection: 113.301934609560462 

Difference: 1.88666902545264747e-07 

 

It is the worst of the bunch, being much less accurate by 
orders of magnitude above all methods. This method is much 
less preferable than previous methods, as it does not provide 
the right balance between run-time and accuracy. It can still be 
used when accuracy is of lesser importance, but the time 
required to calculate is just not preferable.  

How about tweaking the accuracy variable? 

Control: 113.301934798227364 

Bisection: 113.301934798226682 

Difference: 6.82121026329696178e-13 

 

It looks like it’s getting there. Just by making the accuracy 
variable smaller (in this case, 1e-4 to 1e-9), the result is already 
much more accurate. 

But what is the cost? 

Type BISECTION: 407.298 ms 

 

The simple change in the accuracy variable results in a 
much higher run-time, 60.66% slower than the previous, less 
accurate run. It’s even slower than the brute-force method, 
while being less accurate. 

Lastly, the AVX method. This method uses the AVX(2) 
instruction vsqrtpd in the CPU. Bypassing all the C++ function 
overhead and several variable checks, this function is written in 
Assembly to provide a much more accurate result in run-time.  

Generally, the lower level the language is, the faster it is, as 
developers have much better control over the code. It has its 
own drawbacks though, as Assembly is harder to write 
compared to C++. This assembly function is written by the 
author without any references, except for the instruction used, 
which shows how difficult it is to find the proper resources 
needed. 

How does it compare to others? 

Type ASM: 3.3549 ms 

 

It’s much faster than any other method, including C++’s 
own implementation, being faster by 60.64%. Using this 
method, developers can process 4 64-bit numbers at a time, 
with virtually zero slowdown. This is a much preferable 
method of calculating square roots in a time-sensitive, large-



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023 

 

scale environment, as it has data-level parallelism while being 
extremely fast (3.35 nanoseconds per iteration). 

How about the difference? 

Control: 113.301934798227364 

Assembly: 113.301934798227364 

Difference: 0 

 

There is no difference at all between this method and the 
control variable. This can indicate that the native method 
already uses SIMD instructions (not necessarily AVX, as it can 
use SSE instructions instead), which by itself means it is 
already optimized and is already fast. It boils down to what it 
does under the hood—the native C++ method has variable and 
other necessary checks, while the AVX method shown here 
does not. 

IV. CONCLUSION 

Calculating the square root is a relatively arduous task for 
the CPU. Everyone takes for granted how fast CPUs are to 
achieve such performance despite their shortcomings. With that 
said, to properly utilize the CPU’s performance, the proper 
approach is required. Not only in how to approach the problem, 
but how to properly write and implement the algorithm to solve 
the problem in just the right amount of time and accuracy. 

Clearly the best method highlighted here is the AVX 
method and the native C++ method. The rest are insufficient to 
carry out for real-time use, both in run-time and in accuracy. 
Despite its drawbacks, it’s a great way to learn how algorithms 
work, how to speed up and optimize the performance of the 
algorithm, and the benefits and drawbacks of each algorithm. 

With that said, each algorithm has its own ups and downs. 
While each algorithm achieves varying accuracy with varying 
run-times, each has their own purpose, and can be further 
optimized for a highly specific task, should they need be. 
Among the three algorithms (brute-force, Babylonian method, 
Bisection method), the Babylonian method is the preferable 
alternative than the rest, as it provides the right 
compromise/balance between performance and accuracy. With 
proper parameters and optimizations, it can achieve better 
accuracy than the rest while performing faster. 

It is recommended to use the built-in sqrt() function in C++ 
in all cases, as the function is already optimized enough for 
quick computing. Using the AVX method is also advisable, but 
then the question becomes “is it necessary,” rather than “which 
one is faster,” considering how fast the built-in C++ function 
already is. 

There is a phenomenon known as premature optimization, 
where developers will try their best to avoid using already 
available tools at their disposal, but rather implement things 
themselves, believing that they know better than the compiler, 
which already optimizes certain parts of the code mid-
compiling, and thus be able to write “better” and “faster” code. 

This is outside the scope of this paper, but in conclusion, 
it’s better to stick with the built-in method rather than 

implementing it with the goal to achieve better performance, as 
the time spent on writing such algorithm can be used for other 
important aspects of the program. 

With that said, not all premature optimization is bad. Using 
the AVX approach is not bad by any means, but it just means 
that it offloads the difficulty of the code to the developer (such 
as checking whether the input variable is in the domain) instead 
of using already available code via intrinsics. 

It is possible to implement the AVX method without 
writing it in Assembly by using compiler intrinsics. Compiler 
intrinsics are functions that the compiler implements directly to 
the program, rather than linking to a library containing the 
implementation. Using intrinsics, it is possible to explicitly 
utilize AVX instructions without the need to write Assembly 
and linking the function to C++. 

The drawback of the AVX approach is compatibility, but 
that drawback is slowly diminishing as time flies. AVX 
compatibility was introduced into new CPUs since 2011 in 
Intel’s Sandy Bridge lineup and AMD’s Bulldozer lineup of 
processors. Considering that was 12 years ago, compatibility is 
no longer an issue. 

 

SOURCE CODE LINK AT GITHUB 

Source code for this program used for this paper can be 
found here, which contains all the algorithms used for this 
paper. The program is written in C++ with Assembly for the 
AVX approach. 
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