
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Square Roots and Ways to Calculate Them Faster

Ammar Rasyad Chaeroel - 13521136

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): ammarasyad@gmail.com

Abstract—Square roots have always been considered a

relatively computationally intensive task for the CPU compared

to other commonly used mathematical operations. The most

widely used method of calculating square roots is by using

Newton’s method. This paper is written to discuss the already

existing approaches in calculating square roots and determine

which is best, starting from varying algorithm techniques to

utilizing already available resources/instructions of the CPU.

Keywords—mathematics; algorithm; complexity; brute-force

I. INTRODUCTION

A square root is a mathematical function or operation,
which defines a number y such that y2 = x, y is the square root
of x. It is one of the most fundamental and commonly used
mathematical functions that is in use in computer algorithms to
this day, including but not limited to distance calculation,
vectors, etc. Without a fast way to compute square roots, real-
time computation in programs such as games would not be
possible. The question is how do CPUs calculate square roots
fast enough to necessitate real-time compute?

Modern CPUs have a component called FPU (Floating-
Point Unit) that assists the CPU in floating-point compute. This
unit is extremely important, as without the FPU, the CPU
would have a hard time calculating floating-point compute,
thus making it slow or even impossible for real-time uses. At
low-level, the CPU uses instructions dedicated for square root
operations, such as FSQRT, SQRTSS, SQRTSD, and so on.

There are algorithms with various techniques/approaches to
calculate the square root of a number. Those are: Newton’s
Method/Babylonian Method/Heron’s Method, Bisection
Search, etc.

II. THEORETICAL BASIS

A. Brute Force

Brute-forcing, known as the naïve algorithm, operates
exactly like its name. This type of approach brute-forces (keeps
calculating) until the algorithm is satisfied with their defined
parameters. Typically, the algorithm stops when it reaches the
maximum number of iterations done by the algorithm, which
can either be user-defined or a constant variable defined by the
developer. At its core, brute-forcing does not inherently care
whether the result is the most optimal result, it just stops
depending on the parameters defined.

This results in varying accuracy depending on the
parameters. In its nature it does not know and cannot know
anything beforehand, therefore it must find the appropriate
approach to the result on its own. This makes brute-forcing one
of, if not, the slowest algorithm of the bunch, but with the
proper approach (and enough time), it can be the most accurate
of them all.

B. Babylonian Method

YBC (Yale Babylonian Collection) 7289 is an Old
Babylonian mathematical clay tablet. The identity of the
maker, the provenance, and the exact date is unknown. They
correctly calculated the square root of 2 to three sexadecimal
digits after 1.

Figure 1 YBC 7289 from [2]

A square with its two diagonals, and on the side is the
number 30. The diagonals have the numbers 1, 24, 51, 10, 42,
25, 35. At first glance, it is unclear what the numbers mean. It
has been deciphered that the numerical base used in this tablet
is sexagesimal (base 60). The number 30, which represents the
side length of the square, on the sexagesimal system is the
reciprocal of 2 (60/2 = 30) (the square root of 2). The numbers
1;24;51;10 are in sexagesimal figures, and represents the
decimal number 1.41421296… (1 + 24/60 + 51/602 + 10/603)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

that is only off by less than one part in two million. The
numbers 42;25;35 represent the length of the diagonal with the
side length of 30, which is 42.4263889… (42 + 25/60 +
35/602).

Although there is a missing piece of information from the
tablet, and that is the place value of each digit. Under the same
interpretation as before (30/60 = 1/2), the number on the
diagonals, when done under the same process (0;42;25;35),
equals to 0.70711… (0 + 42/60 + 25/602 + 35/603), which is the
approximation of 1/√2, also off by less than one part in two
million.

From this information, it’s not exactly obvious how the
Babylonian method is derived from the clay tablet. When
visualized as a square:

Figure 2 Visualization of the method, taken from [2]

Suppose we want to evaluate the side of the square, which
is the square root, it can be approximated as:

x2 = approx2 + bit

which can be represented geometrically by the sum of a
square with sides approx and bit. With bit as a rectangle with
the side approx, cut this in two lengthwise. Hence

x = √(a2 + B) ≈ a + ½ B/a

That is just for new approx, but for the area of the little
square missing on the bottom right corner, we would require a
new approximation. This is done by subtracting approx2 with
bit, instead of adding. Thus, a new approximation is revealed to
be:

x = √(a2 - B) ≈ a - ½ B/a

Let’s say we are trying to get the square root of 2. It goes as
follows:

√2 = √((3/2)2 – ¼) ≈ 3/2 - 1/2 × 1/4 × 2/3 = 17/12

17/12 works out to be 1.4167, which is not far off from the
square root of 2, but it is close enough. In the sexagesimal
system, the number 17/12 is represented as 1;25. If we are to
apply the procedure again:

√((17/12)2 – 25/602) = √((1;25)2 – 0;00 25) ≈ 1;24 51 10 35
17…

If we truncate to 1;24 51 10, we get our original solution
from the clay tablet.

Heron’s iterative method, which is also known as the
aforementioned Newton’s method, is an iterative method of the
Babylonian method. The accuracy improves with more
iterations.

For √a, Heron’s method to calculate the square root would
be:

xn+1 = ½ (xn + a/xn)

where xn is the n-th iteration value of the square root
approximation, with the initial value x0. The initial value does
not matter, but the further the initial value is from the square
root, the more iterations are required to achieve the same level
of accuracy as with an initial value closer to the square root.

For example, we would like to calculate the square root of
76. The closest perfect square to 76 is 64, and the square root
of 64 is 8. Therefore, the square root of 76 is between 8 and 9.

x0 = 8

x1 = ½ (8 + 76/8) = 8.75

x2 = 8.71785714

x3 = 8.717797887…

and so on.

Heron’s iterative method is quadratically convergent, which
means with every iteration, the error is approximately the
square of the error in the previous step. In other words, the
number of correct digits of the approximation roughly doubles
with each iteration. With the correct answer being 8.71779789,
in x1, the number of correct digits (including 8) is 2. In x2, it is
4, and so on and so forth.

C. Bisection Method

Bisection method is a root-finding method of a continuous
polynomial function. It separates the interval and subdivides
the interval in which the square root lies. By narrowing the gap
between the positive and negative intervals, it gets closer to the
correct answer. It is also known as the binary search method.

Bisection method works iteratively, just like previous
methods. It’s still relatively slower for real-time use (and
compared to the Babylonian method), but it is faster than brute-
forcing.

For any continuous function f(x):

• find two points a and b such that f(a) * f(b) < 0,

• find the midpoint t, and t is the root if f(t) = 0 (or
converges to zero). If it does not,

• divide the interval [a, b], if f(t) * f(a) < 0, the root
is between t and a. Conversely, if f(t) * f(b) < 0,
the root is between t and b. Repeat until f(t) = 0.

When the algorithm stops is usually determined by a pre-
defined accuracy variable by getting the difference between t2
and x (the value which square root is to be determined). This
provides a varying compromise between accuracy and time,
and its flexibility allows developers to finely tune the algorithm
to fit their use case.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

D. Built-in CPU instruction

This is more of using what is already provided by the CPU
rather than an algorithm technique, per se. Modern CPUs have
what is called an FPU, which is already explained in part I. The
FPU is responsible for floating-point arithmetic, and that
includes square root calculations. By using the built-in CPU
instruction, we can remove all the overhead from previous
methods and provide a quick result.

Modern CPUs have a SIMD (Single Instruction Multiple
Data) instruction sets, which provide data-level parallelism on
a vector of data, executed in parallel with a single instruction as
opposed to multiple instructions. There are different SIMD
instruction sets available on modern CPUs, such as SSE
(Streaming SIMD Extensions), SSE2, SSE3, SSE4, AVX,
AVX2, AVX512, and so on. SSE and its subsequent successors
have their own floating-point registers XMM0 through XMM7,
totaling 8 registers. These registers are 128-bit wide, which
means it can fit 4 single-precision floating-point numbers, 2
64-bit double-precision floating-point numbers, 2 64-bit
integers, 4 32-bit integers, 8 16-bit short integers, or 16 8-bit
characters.

SSE was superseded by AVX, which expanded the registers
to 256-bit registers, and named YMM, with XMM being the
lower 128-bit register of a single 256-bit YMM register. This
allows the CPU to store 8 32-bit single-precision floating-point
numbers and 4 64-bit double-precision floating point numbers,
instead of 4 and 2 respectively, allowing for even more
parallelism. AVX2 is the successor to AVX, which expands
most integer instructions to 256-bit and adds several new
instructions.

Due to how wide the instructions are, they generate more
heat and consume more power than other regular CPU
instructions. Using AVX instructions for real-world
applications, which tend to use AVX instructions repeatedly,
may lead to a higher power consumption, therefore lower
power efficiency.

III. APPROACHES TO CALCULATE SQUARE ROOTS

With the information in part II, we have multiple ways to
calculate square roots, one brute-force, two algorithms with
different approaches, and one algorithm using the built-in
AVX(2) instruction in the CPU.

All these algorithms were run by an Intel Core i7-10750H
with a 5 GHz single-core boost. Results may vary in different
processors and compiler optimization flags, but the difference
between the algorithms should be the same across different
processors. The link to the source code is provided in this
paper.

First, the control variable, which is using the built-in sqrt
method in C++ is determined. Specifically for this single test,
the randomly determined double-precision floating-point
number 12837.3284290217631 is used, with the control
variable (the square root of the number) being
113.301934798227364. All tests will have the decimal
precision set to 18, which means 18 digits after the decimal
point.

With the control variable set, there are 5 series of tests, each
using different algorithms, that run a million (1.000.000) times
to put into scale the differences between the algorithms and (at
least attempt to) simulate real-world use which does these
calculations multiple times. Each of these tests have a 100ms
interval between them, to let the CPU “rest” between each test.
This lowers the variability between test suites.

First test, the “native” test, which uses the built-in C++
function to compute the square root.

Type NATIVE: 5.5322 ms

It takes 5.53ms for the C++ function to compute the square
root 1 million times. Dividing that by 1 million, we get 5.53
nanoseconds per iteration. This is more than enough for real-
time compute. The “native” test being the control variable
means we do not need to compare the result of this with the
control variable.

Second test, the brute-force method. The first thing the
algorithm determines is the closest square to the number. If the
number is a perfect square number, and the closest square
equals the number, the algorithm stops. If not, the algorithm
continues.

Suppose the closest square number is x and the control
variable (the square root we’re looking for) is y. If x2 is less
than y, the algorithm adds the step variable 0.1 to x until x2 is
greater than or equal to y. Once the process stops, x is
subtracted by 0.1, and the step variable is divided by 10. The
process repeats for a set maximum number of iterations, in this
case 10 iterations.

How does the algorithm fare?

Type BRUTEFORCE: 388.592 ms

It certainly does not look good for the brute-force
algorithm. With 1 million iterations, it almost reached 500
milliseconds, which translates to 0.38 microseconds per
iteration. Considering the time complexity of the algorithm of
O(n), the lower the input number, the faster the algorithm goes.
This algorithm is certainly not suitable for real-time use.

How far off is the result?

Control: 113.301934798227364

Brute force: 113.301934798199952

Difference: 2.74127387456246652e-11

The algorithm overshoots the control variable by
99.9999921%. This is a more than acceptable margin of error.
In just 10 iterations, it can provide such an accurate
approximation.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Moving on to the third, the Babylonian method, or (in this
case) more accurately, Heron’s iterative method. In this
implementation, it works by setting the desirable accuracy
variable.

Suppose we have the same variables as the previous test.
The accuracy variable is then compared to the difference
between x2 and y. If the difference is ever so slightly greater
than the accuracy variable, then we have acquired our answer.

If that condition has not been reached yet, the algorithm
changes x to be equal to ½ (x + y/x). The algorithm will repeat
until that condition is true.

So how does it fare against other algorithms?

Type BABYLONIAN: 117.265 ms

This method is 331% faster than the brute-force method,
taking 0.117 microseconds per iteration. With a time
complexity of O(log(log(n/m)), where n is the input and m is
the permissible margin of error, the algorithm is faster than the
brute-force method. How accurate is it, though?

Control: 113.301934798227364

Babylonian: 113.301934798227393

Difference: -2.84217094304040074e-14

It is much more accurate than the brute-force method, while
massively reducing the time spent calculating. Although
promising, it is simply not enough to necessitate real-time use.

Fourth, the Bisection method. In this implementation, there
are 3 declared variables, left, right, and mid. An additional
accuracy variable is also defined like the previous method.

Suppose x is the result and y is the control variable to
approach to by the algorithm. What the algorithm does first is
define left as zero, right as the input number, and mid as (left +
right)/2.

While the difference between x2 and y is less than the
accuracy variable, the algorithm does three things:

• If mid2 is greater than the input number, right
equals mid.

• Else, left equals mid.

• mid is recalculated by the same formula as before
((left + right)/2). The algorithm repeats until the
defined condition is satisfied.

How is the performance?

Type BISECTION: 253.518 ms

The algorithm is slower than the Babylonian/Heron’s
method, while being faster than the brute-force algorithm.
Time taken per iteration is around 0.253 microseconds, which

puts it nicely in the middle, between the Babylonian method
and the brute-force method.

Control: 113.301934798227364

Bisection: 113.301934609560462

Difference: 1.88666902545264747e-07

It is the worst of the bunch, being much less accurate by
orders of magnitude above all methods. This method is much
less preferable than previous methods, as it does not provide
the right balance between run-time and accuracy. It can still be
used when accuracy is of lesser importance, but the time
required to calculate is just not preferable.

How about tweaking the accuracy variable?

Control: 113.301934798227364

Bisection: 113.301934798226682

Difference: 6.82121026329696178e-13

It looks like it’s getting there. Just by making the accuracy
variable smaller (in this case, 1e-4 to 1e-9), the result is already
much more accurate.

But what is the cost?

Type BISECTION: 407.298 ms

The simple change in the accuracy variable results in a
much higher run-time, 60.66% slower than the previous, less
accurate run. It’s even slower than the brute-force method,
while being less accurate.

Lastly, the AVX method. This method uses the AVX(2)
instruction vsqrtpd in the CPU. Bypassing all the C++ function
overhead and several variable checks, this function is written in
Assembly to provide a much more accurate result in run-time.

Generally, the lower level the language is, the faster it is, as
developers have much better control over the code. It has its
own drawbacks though, as Assembly is harder to write
compared to C++. This assembly function is written by the
author without any references, except for the instruction used,
which shows how difficult it is to find the proper resources
needed.

How does it compare to others?

Type ASM: 3.3549 ms

It’s much faster than any other method, including C++’s
own implementation, being faster by 60.64%. Using this
method, developers can process 4 64-bit numbers at a time,
with virtually zero slowdown. This is a much preferable
method of calculating square roots in a time-sensitive, large-

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

scale environment, as it has data-level parallelism while being
extremely fast (3.35 nanoseconds per iteration).

How about the difference?

Control: 113.301934798227364

Assembly: 113.301934798227364

Difference: 0

There is no difference at all between this method and the
control variable. This can indicate that the native method
already uses SIMD instructions (not necessarily AVX, as it can
use SSE instructions instead), which by itself means it is
already optimized and is already fast. It boils down to what it
does under the hood—the native C++ method has variable and
other necessary checks, while the AVX method shown here
does not.

IV. CONCLUSION

Calculating the square root is a relatively arduous task for
the CPU. Everyone takes for granted how fast CPUs are to
achieve such performance despite their shortcomings. With that
said, to properly utilize the CPU’s performance, the proper
approach is required. Not only in how to approach the problem,
but how to properly write and implement the algorithm to solve
the problem in just the right amount of time and accuracy.

Clearly the best method highlighted here is the AVX
method and the native C++ method. The rest are insufficient to
carry out for real-time use, both in run-time and in accuracy.
Despite its drawbacks, it’s a great way to learn how algorithms
work, how to speed up and optimize the performance of the
algorithm, and the benefits and drawbacks of each algorithm.

With that said, each algorithm has its own ups and downs.
While each algorithm achieves varying accuracy with varying
run-times, each has their own purpose, and can be further
optimized for a highly specific task, should they need be.
Among the three algorithms (brute-force, Babylonian method,
Bisection method), the Babylonian method is the preferable
alternative than the rest, as it provides the right
compromise/balance between performance and accuracy. With
proper parameters and optimizations, it can achieve better
accuracy than the rest while performing faster.

It is recommended to use the built-in sqrt() function in C++
in all cases, as the function is already optimized enough for
quick computing. Using the AVX method is also advisable, but
then the question becomes “is it necessary,” rather than “which
one is faster,” considering how fast the built-in C++ function
already is.

There is a phenomenon known as premature optimization,
where developers will try their best to avoid using already
available tools at their disposal, but rather implement things
themselves, believing that they know better than the compiler,
which already optimizes certain parts of the code mid-
compiling, and thus be able to write “better” and “faster” code.

This is outside the scope of this paper, but in conclusion,
it’s better to stick with the built-in method rather than

implementing it with the goal to achieve better performance, as
the time spent on writing such algorithm can be used for other
important aspects of the program.

With that said, not all premature optimization is bad. Using
the AVX approach is not bad by any means, but it just means
that it offloads the difficulty of the code to the developer (such
as checking whether the input variable is in the domain) instead
of using already available code via intrinsics.

It is possible to implement the AVX method without
writing it in Assembly by using compiler intrinsics. Compiler
intrinsics are functions that the compiler implements directly to
the program, rather than linking to a library containing the
implementation. Using intrinsics, it is possible to explicitly
utilize AVX instructions without the need to write Assembly
and linking the function to C++.

The drawback of the AVX approach is compatibility, but
that drawback is slowly diminishing as time flies. AVX
compatibility was introduced into new CPUs since 2011 in
Intel’s Sandy Bridge lineup and AMD’s Bulldozer lineup of
processors. Considering that was 12 years ago, compatibility is
no longer an issue.

SOURCE CODE LINK AT GITHUB

Source code for this program used for this paper can be
found here, which contains all the algorithms used for this
paper. The program is written in C++ with Assembly for the
AVX approach.

ACKNOWLEDGMENT

This paper would not have been brought to fruition without
the resources provided by the IF2211 Algorithm Strategies
class with the guidance of Dr. Nur Ulfa Maulidevi, S. T, M.Sc.
as the lecturer of the author in class.

The author would also like to thank past researchers and
other programmers on the Internet that have provided tutorials
and documentation. Without it, the author would not have been
able to learn and make a program for this paper.

REFERENCES

[1] Burden, Richard L.; Faires, J. Douglas (1985), "2.1 The Bisection
Algorithm", Numerical Analysis (3rd ed.), PWS Publishers, ISBN 0-
87150-857-5

[2] Khalasi, Bhargav (2020), https://www.codesdope.com/blog/article/find-
square-root-of-a-number/ [Accessed: May 22, 2023],

[3] Fowler, David; Robson, Eleanor (1998), “Square Root Approximations
in Old Babylonian Mathematics: YBC 7289 in Context”. Historia
Mathematica. 25 (4): 376

[4] Lahanas, Michael,
https://www.hellenicaworld.com/Greece/Science/en/HeronsMath.html
[Accessed: May 22, 2023].

[5] Verma, Priyank (2014), https://priyankvex.com/2014/04/01/newton-
raphson-vs-bisection-search-vs-brute-force-for-finding-square-root-of-
number/comment-page-1/ [Accessed: May 22, 2023].

https://github.com/ammarasyad/sqrtMethods
https://www.codesdope.com/blog/article/find-square-root-of-a-number/
https://www.codesdope.com/blog/article/find-square-root-of-a-number/
https://www.hellenicaworld.com/Greece/Science/en/HeronsMath.html
https://priyankvex.com/2014/04/01/newton-raphson-vs-bisection-search-vs-brute-force-for-finding-square-root-of-number/comment-page-1/
https://priyankvex.com/2014/04/01/newton-raphson-vs-bisection-search-vs-brute-force-for-finding-square-root-of-number/comment-page-1/
https://priyankvex.com/2014/04/01/newton-raphson-vs-bisection-search-vs-brute-force-for-finding-square-root-of-number/comment-page-1/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 22 Mei 2023

Ammar Rasyad Chaeroel 13521136

