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Abstract—RSA is one of the most used encryption algorithm
commonly  used  in  data  transmission.  One  of  the  criteria  for
building an RSA cryptosystem is to use two prime numbers to
calculate the modulo. If, however the modulo is a prime number,
there exists different ways to crack the entire cryptosystem.

Keywords—Cryptography, RSA, Divide and Conquer, Security

I.  INTRODUCTION

RSA  (Rivest-Shamir-Adleman)  is  a  widely  used
cryptographic  algorithm for  secure  communication  and  data
encryption. Its security relies on the computational difficulty of
factoring  large  composite  numbers  into  their  prime  factors.
However, the effectiveness of RSA can be comprimised if the
underlying prime factors are not chosen carefully.

This paper focuses on the analysis and implementation of
prime  modulo  RSA  encryption  systems,  employing  Euler’s
criterion to determine the quadratic residues and non-residues
modulo a prime. Specifically, we will delve into the utilization
of Euler’s Criterion in conjunction with a Divide and Conquer
algorithm to  enhance  the  efficiency  of  prime  modulo  RSA
computations.

The main objective of this paper is twofold. Firstly, we will
try  to  understand  the  underlying  theories  used  to  reverse
engineer the RSA cryptosystem. By understanding the theories,
we  hope  to  understand  why  the  implementation  of  prime
modulo RSA is a bad one. Secondly, we aim to implement the
algorithms used to crack the prime modulo RSA using a divide
and conquer algorithm to expand the theories to the n-th power.

The  remainder  of  this  paper  is  organized  as  follows:
Section II provides an introduction to the theories used in the
following sections.  Section III  will  introduce the concept  of
modular square root and the various algorithms to compute the
value.  Section  IV  aims  to  explain  and  implement  the
algorithms defined before to the n-th power. Finally, in Section
V  we  will  discuss  why  a  prime  modulo  RSA  is  a  bad
cryptosystem.

II. THEORITICAL FRAMEWORK

A. Divisibility, Factors, and Prime Numbers
If a and b are integers with , we say that a divides b if

there is an integer c such that  , or equivalently, if   is
an integer.  When  a divides  b,  we say that  a is  a  factor or
divisor of  b, and that  b is a multiple of  a. The notation  
denotes that  a divides  b and the notation   denotes that  a
does not divide b [1].

If a does not divides b, then when b is divided by   a, there
is a quotient  q and a remainder r, as shown below.

The factors of a number n are defined as a set of numbers
, where    and ; or formally as 

An integer p is called a prime if the only factors of p are 1
and  p. Typically, the sieve of erastosthenes is used to find all
primes not exceeding a specified integer. 

B. Modular Arithmetic
Modular arithmetic, also known as clock arithmetic,  is a

branch  of  arithmetic  that  deals  with  the  remainder  of  a
division  of  an  integer  by  a  divisor  commonly  known as  a
modulo. Modular arithmetic uses the notation

The triple equal sign denotes congruance, and for all a and
x,  we say  a is  congruent to  x if  and only if  there exist  an
integer n where

Similar  to  a  regular  arithmetics,  there  exists  an  inverse
modulo  of a modulo p, such that
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However, it  can be proven that not all numbers  a where
 has an inverse modulo p if p is not a prime number. This

is due to the fact that an inverse modulo only exist if and only
if 

Consequently, it can be proven that for a prime modulo p,
all numbers  will have a modulo inverse.

C. Greatest Common Divisor, Euclidean Algorithm, and 
Linear Congruance
The  largest  integer  that  divides  both  of  two  integers  is

called the greatest common divisor[1] of these integers. Let a
and b be positive integers, there exists such integer  d, where

 and  , such that no integer larger than  d can divide
both  a and  b.  The  greatest  common divisor  of  a and  b is
denoted by  .

Computing the gcd of two integers by searching the largest
prime factorizations if inneficient, because it is time consuming
to  find  the  prime  factorizations.  Hence,  the  Euclidean
Algorithm is used to efficiently find the gcd of two numbers.

A congruance in the form 

where m is a positive integer, a and b are integers, and x is
a variable, is called a linear congruance. There are two ways to
solve  the  linear  congruance,  the  first  method is  to  find  the
inverse modulo , such that . Then, we can
multiply the congruance above to

The second method involves bruteforcing the value of x by
rearranging the congruance above to

 

D. System of Linear Congruences and Chinese Remainder 
Theorem
A system of linear congruances [1] is a system consisting

of more than one linear congruance in the form

The system above is solvable using the Chinese Remainder
Theorem  [1],  that  states  that  when the  moduli  of  problems
involving  linear  congruances  are  pairwise  relatively  prime,
there is a unique solution of the system modulo the product of
the moduli.

Let   be  pairwise  relatively  prime positive
integers  greater  than  one  and   be  arbitrary
integers. The system

has a unique solution modulo  . (That is,
there is a solution   with  , and all other solutions
are congruent modulo m to this solution.

Generally,  the solution of  a  linear  congruance system is
defined as

where

E. Group Theory
A set G [4] is a group if the following requirements hold:
 Closure: for all 
 Associativity: for all 
 Identity:  There  exists  an  element   such  that

 for all 
 Inverse:  For all  elements  ,  there exists some

 such that 

In the set G where ,   means  n amount
of times when ,  when , and   when

.
Furthermore,  if  ,  then  the  operation   is

commutative  and  the  group  is  called  abelian.  Usually   is
denoted by the operation  and we typically use  instead of

.
An  example  of  a  group  is  all  integers  modulo  n (a

remainder) under modular addition, where  , where
. We will now prove that   is a

group.
 ,  let  .  Since  ,

.
 , modular addition is associative, that is

.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023



 The  identity  requirements  also  hold,  i.e.
.

 , the modulo inverse of   is  , since
.

F. Fermat’s Little Theorem
Fermat’s Little Theorem [3] states that if p is a prime and a

is an integer not divisible by p, then

Furthermore, for every a, we have

We can use  Fermat’s Little Theorem to quickly compute
the modular inverse of a.

However, there exist composite numbers  n, such that the
numbers  n satisfies  Fermat’s Little Theorem. Such numbers
are commonly called pseudoprimes.

G. RSA Algorithm
The  RSA  Algorithm  [6]  is  an  example  of  asymmetric

encryption,  also known  as  public  key  encryption,  where  a
public key is used to encrypt data and only a secret, private
key can be used to decrypt the data.

Commonly  used  terminologies  of  the  RSA  Algorithm
includes:

1. The message m;
2. The encrypted message c;
3. The modulo  n,  which is  made by  multiplying  two
prime numbers p and q;
4. The public exponent e;
5. The private exponent d;
6. The totient value ;
7. The public key pair (n, e); and
8. The private key pair (n, d).

To  generate  the  encryption  and  decryption  keys,  first
compute n as the value  of two primes p and q.

These primes should be large, “random” primes. Although
the  value  n will  be  public,  the  factors  p and  q will  be
effectively  hidden  from  everyone  due  to  the  enormous
difficulty of factoring n. This same concept also hides the way
d can be  derived from e.

Then, we calculate the totient  to generate the value d.

Then, we pick the public exponent e, most commonly used
is the prime 65537. The private exponent d is finally computed
by  finding the modular inverse of e modulo .

To encrypt the message M using the public key pair (n, e),
first represent the message into an integer m between 0 and n-
1. Then, encrypt the message by raising it to the  e-th power
modulo  n.  That  is,  the  result  (the  ciphertext   C)  is  the
remainder when  is divided by n.

To decrypt  the ciphertext,  we raise it  to  the  d-th  power
modulo n.

III. MODULAR SQUARE ROOT

A. Modular Square Root
Similar  to  classical  arithmetic,  an  integer  a modulo  an

integer m greater than 1 is said to have a modular square root
if there exists an integer r such that

For each integers ,  is also a valid
modular square root, since

However, not all integers   in   have modular square
root. Formally, if there exists an integer   such that
the congruance above has a solution, then  a is  said to be a
quadratic residue [5] modulo p. If the congruance above does
not have a solution, then a is said to be a quadratic  non-residue
modulo p.

B. Euler’s Criterion
Euler’s  Criterion  [6]  is  a  formula  used  to  determine

whether an integer a is a quadratic residue modulo a prime p.
Precisely, if p is an odd prime and a is an integer where ,
then  we  can  find  whether  the  quadratic  congruance  has
solutions by calculating
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C. Lagendre’s Symbol
Lagendre’s Symbol is a number theoritic function (in the

form of ) which is defined to be equal to -1, 0, or 1; depending
on whether a is a quadratic residue  modulo p. 

The lagendre’s symbol obeys the identity

Other particular identities include

In general, if p is an odd prime, then

D. Calculating the Modular Square Root
In  this  part,  we  will  only  consider  the  case  when  the

modulo m is a prime number since the modular square root of
coprime modulo RSA are hard to calculate, as we will see in
the following parts. 

1) Modulus equal to 2
If  the  modulus  p is  equal  to  2,  then  the  value  of  r is

congruent to the value of  a, since the square root of an odd
number  is  an  odd  number  and  the  square  root  of  an  even
number is an even number.

2) Modulus congruent to 3 mod 4
In the case when ,   is divisible by 4. We

can expand Euler’s criterion to get the modular square root if
the square root exists.

Multiplying both sides with a

Let  r be  the  modulo  square  root,  we  can  simplify  the
congruance

into 

using the equivalence above. Then, replacing the value  m
with , we get

Taking the square root of both sides, we get

Lastly, substitute the value m back into the equation, where
.

Since the value of the modular square root can be directly
calculated, the complexity of this algorithm is .

3) Modulus Congruent to 1 mod 4
In the case where the prime p has congruance equivalent to

, the modular square root is harder to calculate
than the other case. There exists many algorithms to calculate
the modular square root in this case,  but now we will  only
look  at  how  Tonelli-Shanks [7]  algorithm  calculate  the
modular square root. The steps are as follows:

• Set  .  If  ,  then  a is  not  a  square
modulo p according to  Euler’s criterion.
• Otherwise, we have  . Next, set   so that

.
• While   is  even  and  ,  set   and
update the value of .
• If , then the square root of  is , since 
is odd.
• Otherwise,    for  ,  where  .
Choose  an  arbitrary  non-square   by
repeatedly picking   uniformly at  random until

• Run the algorithm recursively from the 3rd step with
the variable . This establishes the invariant of
step 3, because
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where  the  lagendre  symbol  of  each  equivalence
equals  to  .  Expanding  the  equation  above
further, we get

• Let   be the square root of   obtained from the
recursive call. We will compute the value   such that

. Observe that

• Bringing  to the left side yields

• Since  we  use  the  value  ,  it  follows  that
 is a square root of  modulo .

Now, we will argue why this algorithm always terminates
and is correct. Since the value of  is changed throughout the
algorithm in  a  way  that  ensures  .  This  is  the
case, because   are the only square roots of 1 modulo  p
and in every step we divide the exponent   only by 2. The
case  is reduced to the case  but for a different
value of  , such that the square root for the original   can be
recovered from the new value of .  Lastly, the algorithm will
always terminates, because   holds for an odd  , or  k
gets increased by at one, hence  gets divided by a power of
two  greater  than  one.  This  guarantees  termination,  because
iterative  division  of   by  two  will  yield  an  odd  number
whereupon the algorithm will terminate.

This algorithm is expected to run in   time, if
we assume that the multiplication modulo p runs in a constant
time.

IV. MODULAR NTH ROOT

Now, we will discuss the topic to see why RSA does not
use a prime modulo in its implementation. Firstly, we need to
expand the topic before for the n-th root. Since we only cover
the topic of modular square root, we will only cover the topic
where ;  . 

Since  is an integer of power of two, we can recursively
compute the value of the n-th root by dividing the value of  by
two for each iteration. For each successful calculations (that is,
the modular square root exists), we will get two integers, each
are valid modular square root of a modulo p.

Since we are finding a valid message  from a ciphertext ,
we can use the  divide and conquer algorithm to compute the
message m quickly. Additively, since not all integers computed
from the algorithm are a modular square root on itself, not all
nodes will be expanded from the search. 

     

Graph 1. Divide and Conquer Example

To illustrate, the graph above shows one possible cases for
the algorithm used. The blue areas indicate that the modular
square root exists, but   yet, continuing the computation
for both integers found. The red areas indicate that the modular
square root does not exists, stopping the computation, and the
green areas indicate that  the modular  square root exists and

.

At  the  end of  the  computation,  we just  need to  linearly
check each of  the possible values  computed before and see
which value fits the criteria.

I’ve provided the code implementing the algorithms above
in the following link [8].

V. PRIME MODULO RSA ANALYSIS

We have seen above that for any RSA cryptosystem with
a  prime  modulo,  it  is  very  easy  to  crack  the  entire
cryptosystem using the algorithm described above. Calculating
the time complexity of the worse case, each “node” requires

 time to calculate each it’s modular square root. For
an  integer  ,  the  total  worse  case  complexity  of  the
algorithm used is 

Since there are  amount of checks needed, and each
checks requires   amount of computation. Finally,  the
last check of the algorithm needs  amount of linear checks
to determine the correct prime chosen.
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