
Greedy Best First Search in Automated Snake Game 
Solvers 

Muhammad Daru Darmakusuma - 13518057 
Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

E-mail (gmail): darudarmakusuma@gmail.com 
 
 
 

Abstract—Snake game is a classic game where the player         
maneuvers a line that will grow in length when the line achieve its             
goal that represented as a food, often as an apple. The line itself is              
an obstacle for the player to not hit itself. Such game like this can              
be automated with a route or path planning such as Greedy Best            
First Search algorithm. The algorithm help the line find its goal           
with a shortest path, but not promising the safety of the line from             
itself. The automated solver will be created by using Greedy Best           
First Search and some forward checking to ensure the line safety           
from hitting itself.  

Keywords—snake game, greedy best first search, automated 

I.  INTRODUCTION  
Snake is a common concept in video game where the          

player play as a line that moves rapidly and the player need to             
control the direction where the line moves. The line that the           
player control grows as the line achieve its goal and the           
primary obstacle is the line itself to not be hit. 

The concept of snake game is originated in the 1976 as an            
arcade game called Blockade and the easy of its making led to            
many versions of it that many has the word snake or worm in             
the title. The snake game concept became popular when Nokia          
loaded their mobile phone with the game variant in 1998. 

The gameplay of snake is quite simple. The player controls          
a dot, square, object, or line in a plane. The object that player             
control will moves forward continuously and leave some trail         
behind like a moving snake, so the snake rapidly gets longer           
as it achieve its goal. The player loses the game when the            
snake run itself toward an obstacle like screen border, itself, or           
other object. 

As a classic game it is, the snake game has a lot interest in              
developing the automated solver to beat the game. The game          
itself often does not have a winning state because the goal           
keep being updated as the snake achieve a goal. The game can            
be called an endless game, so that take interest in many           
programmer to solve the game in the most optimal way. The           
common objective of the solver is to gain many score as           
possible without hitting an obstacle, so the snake can fulfill the           
area or plane of the game. 

The approach that can be used to create one of a solver is             
using a route/path planning. The algorithm that will be used is           
Greedy Best First Search and a forward checking to see if the            
snake in a safe state.  

II. THEORY 

A. Graph 
First, to know how the Greedy Best First Search works, we           

need to know the concept of a graph. Graph is a data structure             
which non-linear and has components such as nodes and         
edges. Nodes in graph often referred as the vertices and the           
edges of the graph are the arcs that link two or more nodes in a               
graph.  

 
Figure 1. Example of a graph 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2019-2020/BFS-da
n-DFS-(2020).pdf 

Graph can be used to solve many problems by representing          
it as a network which prescribe as link of solutions. Nodes in a             
graph contains a needed information as what the graph         
represent. In a solution finding algorithm, a graph often used          
as a medium to traverse the solution.  

B. Graph Traversal 
A graph can be used to represent a problem, so to find the             

solution there is need to be the algorithm to traverse and visit            
the nodes of the graph systematically.  

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 



 
Figure 2. Example of traversing a graph with 0 as the starting node 

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/11-Graph/t
raverse.html 

With the assumption that the graph is connected, we can          
traverse to its nodes with two approach of graph         
representation: 

1. Static Graph 

The graph is already fixed and constructed before the         
search begin. The graph must completely drawn and        
the data must be injected, this type often called as          
define-and-run. The graph represented as an      
structured data. 

2. Dynamic Graph 

The graph is being constructed as the search being         
done. The graph is being defined on the go via an           
actual forward computation, this type often called as        
an define-by-run.  

For traversing the graph there is two type of algorithm that           
can be used. The algorithms to search the graph: 

1. Uninformed Search 

The traversing with uninformed search does not       
provide any extra information to compute. Example       
for this search are DFS, BFS, Depth Limited Search,         
Iterative Deepening Search, and Uniform Cost      
Search. 

2. Informed Search 

The search of graph based on heuristic search. The         
search able to know non-goal state that more        
promising than other. Example for this search are        
Best First Search and A* (A-Star). 

C. Greedy Best First Search 
Each nodes in graph has an evaluation function, that is: 

f(n) = h(n) 
f(n) provides the estimated total cost for the nodes and the           
search will be expanded at the node with smallest f(n).          
Often, for best-first algorithms, f is defined in terms of a           
heuristic function, h(n). Heuristic functions are the       
common form way passing the additional knowledge of        
problem to the search algorithm. 

Greedy Best First Search algorithm always pick the        
path that appears to be the best for the moment which           

usually called as local minima or plateu. This algorithm         
take both Breadth First Search and Depth First Search as it           
implementation. Best First Search helped the algorithm to        
take the advantages from those two algorithm. As the         
search go with Best First Search, each step the algorithm          
pick the most promising node. The Best First Search         
algorithm will expand the node that is closest and has less           
cost than the others. 
Greedy Best First Search algorithm follow these steps: 

1. Step 1: Place the starting node into the OPEN list. 

2. Step 2: If the OPEN list is empty, the solution not           
found, stop, and return failure. 

3. Step 3: Remove the node n, from the OPEN list          
which has the lowest value of h(n), and places it in           
the CLOSED list. 

4. Step 4: Expand the node n, and generate the         
successors of node n. 

5. Step 5: Check each successor of node n, and find          
whether any node is a goal node or not. If any           
successor node is goal node, then return success and         
terminate the search, else proceed to Step 6. 

6. Step 6: For each successor node, algorithm checks        
for evaluation function f(n), and then check if the         
node has been in either OPEN or CLOSED list. If the           
node has not been in both list, then add it to the            
OPEN list. 

7. Step 7: Return to Step 2. 

As a graph in “Figure 3” we could traverse it with           
Greedy Best First Search. At each iteration, each expanded         
node is evaluated with the evaluation function       
f(n)=h(n). 

 

Figure 3. Example of a graph for Greedy Best First Search 
https://www.javatpoint.com/ai-informed-search-algorithms 

Expand the nodes of S and put in the CLOSED list 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 



Initialization: Open [A, B], Closed [S] 

Iteration 1: Open [A], Closed [S, B] 

Iteration 2: Open [E, F, A], Closed [S, B] 

                  : Open [E, A], Closed [S, B, F] 

Iteration 3: Open [I, G, E, A], Closed [S, B, F] 

                  : Open [I, E, A], Closed [S, B, F, G] 

Hence the final solution path will be: S----> B----->F----> G 

Greedy Best First Search algorithm had the       
advantages that is more efficient than BFS or DFS and can do            
both at the same time having both advantages. The algorithm          
disadvantages is having an unguided Depth First Search that         
led to the worst case scenario, it will stuck in a loop. The             
algorithm is not optimal too to gain the solution.  

III. APPLICATION 
The variant of the snake game that we use is where the            

game area is a toroid, the snake can move pass the border of             
the screen and will reappear in the other side of the border it             
pass. The player loses when the snake hits its own body and            
the snake grows longer every time the player reach the goal or            
which can be represented as food. 

By representing the position of the head of snake as the           
node, each expansion has four successors which is the         
direction of the head to go. The direction would be the edges            
to each node.  

 

 
Figure 4. Graph representation for the Snake Game 

 

A. Analysis 
Each nodes contains the information of the head position         

and how far the head to the food or the goal. The heuristic             
function to find the distance and the lowest cost to a node is by              
using the Manhattan Distance between the head of the snake          
and the goal (food) which is: 

d = |x1 - x2| - |y1 - y2| 
where p1 = (x1 ,y1) and p2 = (x2,y2 ), p1 is the position of the food               
and p2 is the position of the head of snake. The distance            
represented by d, so we can safely say f(n)=h(n) where h(n) =            
d. 

The heuristic function that we use need to be modified          
because we use the variant of snake where the game area           
behave as a toroid. The distance would be different if the           
snake can move pass the border. We need to know the size of             
the game area to calculate the true distance. So to calculate the            
distance in this variant: 

dx = min( |x1 - x2|, size - |x1 - x2| ) 
    dy = min( |y1 - y2|, size - |y1 - y2| ) 

d = dx - dy 
After we defined our heuristic function for the algorithm to          

work with, we could easily find the minimum route for the           
snake to get its food. 

 
Figure 5. Example of passing the border as nearest 

 
The automated solver can be called finished because now         

the snake can find its own food, but there is a problem by only              
using this algorithm. The algorithm did not care if the shortest           
path has the snake own body on its way, so it will keep hitting              
itself as it goes and does not return a good amount of score.             
The Greedy Best First Search do not look up to how the snake             
will end up. The algorithm just direct the snake to the nearest            
path to get the food. So we need another algorithm to guard            
the snake along the way. 

The forward checking method that was made is        
spontaneous and instant by checking few steps further for the          
snake head and see if there is a body of itself. Every direction             

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 



get checked if there is a body of snake a few blocks away, the              
more it does, the more the snake would avoid those area. 

For the record, the snake cannot got to the opposite          
direction when the length of the snake is greater than two. The            
snake will hit his own body. So when the nodes of successors            
at level three of graph, it will only create three successors           
onwards. 

B. Implementation 
Implementing the Greedy Best First Search algorithm is        

quite an ease, the pseudocode for the algorithm: 

nodes = [] 
visited = [] 
for dir in  every direction: 

nodes.append(dir, 
manhattan_dist(snake.head.pos,food.pos,areasize),
new head position) 

sort nodes by dist 
for move in nodes: 

if move possible and move not in visited: 
do move 
visited.append(move) 

 

We implements the Manhattan Distance as follows: 

int manhattan_dis(p,q,size): 
    dx = min( abs( q.x - p.x ), size - abs( q.x - p.x ) ) 
    dy = min( abs( q.y - p.y ), size - abs( q.y - p.y ) ) 
    return dx + dy 

 

Visited list is representing the closed list in the Greedy          
Best First Search and the nodes list represent the opened list in            
the algorithm. The possible move to do is not countering the           
current direction and the state is not in visited list so there is             
no redundancy to expand in the same node. 

We know that the Greedy Best First Search does not          
provide any safety to the snake from any obstacle so we need            
to modify the algorithm with a checker, a forward checker. 

The pseudocode of the Greedy Best First Search algorithm         
with a simple forward checking can be put like this: 

nodes = [] 
visited = [] 
for dir in  every direction: 

nodes.append(dir, 
manhattan_dist(snake.head.pos,food.pos,areasize),
new head position, prio = 0) 

for move in nodes: 
newPrio = forwardChecker(move) 
move.prio = newPrio 

sort nodes by prio, dist 
for move in nodes: 

if move possible and move not in visited: 
do move 
visited.append(move) 

 

The prio that was added is meant priority to sort what the            
best move to do by looking few steps ahead. The larger the            
prio, the worse the move to be done. 

Forward checking for the algorithm is made by analyzing         
what is the common mistake the snake do when it is only use             
the Greedy Best First Search algorithm. We deconstruct some         
of the problem for the algorithm. The first one is the snake did             
not care if there its own body in the way, to solve this problem              
we need to detect it and add the priority value to the move. 

if move.newposition is in snake.body.position: 
move.prio += 1 

 

The code indicates that the new position of the head is in the             
body itself. So the priority value got higher which in this case            
reversed, the higher the worse. By that, we know that the           
move can be fatal to the snake, so we put it in the end of               
queue. 

If all the move is safe, we need to check the safer move to              
do by checking some steps ahead if there is a block of snake             
body or not. We can check it by see three blocks away from             
the snake head in every direction. The checker will count the           
amount of snake’s body block in each direction 3 blocks away. 

for 3 block from direction: 
if block.pos is in snake.body.pos: 

move.prio += 1 

 

The nearest block in which direction will have the priority          
added to so the snake stay far away from its own body. To             
calculate how near the block is, we can use the Manhattan           
Distance again. 

for 3 block from every direction: 
if nearest(block,s.body): 

move.prio += 1 

 

The common mistake the snake do is to fall on its own trap.             
The trap was made when the snake go circular and made shape            
like prison so it can go nowhere. This forward checking was           
the hardest, so i decide to make a naive checking in every            
eights block around the snake’s head. If there is a diagonal           
pattern making a door like gesture, the snake must not go in            
there and find a move to escape. The set of movements is still             
controlled via priority. 

 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 



for 8 block around snake.head.pos: 
if there is a door like pattern to a direction: 

move.prio += 1 

 

 
Figure 6. Door-like pattern signed by red dots in snake’s body 

 
By the look of “Figure 6”, we can see there is a door-like             
pattern in the top direction of snake. The snake must escape           
from that direction by looking any best direction to get away.           
Unfortunately, the algorithm for checking this mistake just        
work on some few cases. 

The success of each run is dependent to the food placement           
too, if the food placed in the position that is led to a dangerous              
state, make the snake stuck, it will guarantee it will lose. 

C. Case Studies 
The Greedy Best First Search algorithm is implemented in         

Python 3.7 as follows: 
def best_first_search(): 
    global s, snack, visited, step 
    step += 1 
    curr_posx = s.body[0].pos[0] 
    curr_posy = s.body[0].pos[1] 
    nodes = [] # 0: left, 1: right, 2: up, 3: down 
    # Measuring distances 
    p = ((curr_posx-1)%20,curr_posy) 
    nodes.append(('left', 
manhattan_dis((curr_posx-1,curr_posy),snack.pos,size
=rows), p)) 
    p = ((curr_posx+1)%20,curr_posy) 
    nodes.append(('right', 
manhattan_dis((curr_posx+1,curr_posy),snack.pos,size
=rows), p)) 
    p = (curr_posx,(curr_posy-1)%20) 
    nodes.append(('up', 
manhattan_dis((curr_posx,curr_posy-1),snack.pos,size
=rows), p)) 
    p = (curr_posx,(curr_posy+1)%20) 
    nodes.append(('down', 
manhattan_dis((curr_posx,curr_posy+1),snack.pos,size
=rows), p)) 
    if set(nodes[:][2])<= set(list(map(lambda 
z:z.pos,s.body))): 
        s.move() 

        return 
    i = 0  
    print() 
    forwardChecking() 
    best = [] 
    best = sorted(best,key=lambda t: t[1]) 
    print(best) 
    # Do a best and possible move 
    for p in best: 
        print(i) 
        if p[0] == "left" and s.curr_dir != "right" 
and p not in visited: 
            print("A") 
            s.move(control="left") 
            visited.add(p) 
            return 
        elif p[0] == "right" and s.curr_dir != 
"left" and p not in visited: 
            print("B") 
            s.move(control="right") 
            visited.add(p) 
            return 
        elif p[0] == "up" and s.curr_dir != "down" 
and p not in visited: 
            print("C") 
            s.move(control="up") 
            visited.add(p) 
            return 
        elif p[0] == "down" and s.curr_dir != "up" 
and p not in visited: 
            print("D") 
            s.move(control="down") 
            visited.add(p) 
            return 
        i+=1 
    s.move() 
 

Running program: 

 

 

 

 

 

 

 
Figure 7. Example 1 of running bot 

 
 
 
 
 
 
 
 
 

Figure 8. Example 2 of running bot 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 



Statistic of the score and the steps taken each run of the 
automated snake game solver: 

 
From the statistic of score every run and each steps          

every run, the automated solver is pretty consistent. Steps         
taken does not promise a good score. 
 
Program executed in a computer system with specification: 

 

IV. CONCLUSION 
Greedy Best First Search is a fast algorithm to implement          

as an automated snake solver and can find the smallest amount           

of step to find the goal. Unfortunately the algorithm have the           
disadvantages that can be stuck at an unguided depth-search         
that will lead to losing. The food placement is a factor to make             
a run a success. So to complete the algorithm, we need to            
build a forward checking. 

VIDEO LINK AT YOUTUBE 
https://youtu.be/Y-yVeJZXKpI 

Source Code Link 

https://github.com/mdarud/snake-bot.git 

ACKNOWLEDGMENT  
First, the author would like to be thankful to God. The           

author like to express his gratitude and appreciate Mr. Rinaldi          
Munir for his teachings and lectures in Algorithm Design. The          
author also be thankful for his family and friends.  

REFERENCES 
[1] https://www.javatpoint.com/ai-informed-search-algorithms visited at 3    

May 2020, 20.00 WIB. 
[2] Munir, Rinaldi. 2018. Slide Kuliah Graf Traversal IF2211 

Strategi Algoritma. Bandung: Institut Teknologi Bandung. Diakses pada 
2 May 2020, 18.00 WIB. 

[3] Munir, Rinaldi. 2018. Slide Kuliah Route/Path Planning IF2211 
Strategi Algoritma. Bandung: Institut Teknologi Bandung. Diakses pada 
2 May 2020, 18.00 WIB. 

 
PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang saya tulis         
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan         
dari makalah orang lain, dan bukan plagiasi. 

Bandung, 4 Mei 2020 

 
Muhammad Daru Darmakusuma, 13518057 

  
 
 

 
 
 
 

 
 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 


