
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Playing Overcooked using a Greedy Approach
An Attempt to Make an Effective Computer Player

Chokyi Ozer - 13518107

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13518107@std.stei.itb.ac.id

Abstract—This paper shows how a greedy algorithm can be

made as a strategy in getting as much outcome as possible on a

cooperative game. We approach this goal by doing the tasks that

takes the least amount of time. Our analysis to our results shows

that to achieve better results, the strategy will need to consider

more than just the time taken to finish a task. This proves that

there are more room for research in the field of game AI.

Keywords—Greedy, Artificial Intelligence, Strategy, Games,

Overcooked

I. INTRODUCTION

AI or Artificial Intelligence has been a vital part in games,
from the simple “keep moving left” AI of a Goomba in the Mario
Bros Series, to more complex AI like opposing factions in RTS
games. These AI enhances the game to become more involving
and attractive in such a way. However, there are a different
approach to AI in games that has become much more popular.

In the recent years, having AI as a replacement for human
players have become increasingly popular. In 2015, DeepMind’s
AlphaGo was able to win their first match against a professional
player with a score of 5-0 [1]. OpenAI Five managed to win a
5v5 in Dota 2 in 2018 [2]. With the emergence of the popularity
of machine learning, AI has never been pushed to its best
outcome.

However, having such a complex AI requires a lot of time
and effort into making it, and a lot of computing power into
running it. Although less powerful, there other more simpler
strategies to make a strongly sufficient AI. This provides a
challenge to create a simple yet effective AI in other various
games. This document will explain an attempt to make some
steps a computer can take to achieve the most efficient workflow
possible with a greedy algorithm in a cooperative game of
Overcooked.

II. THEORETICAL FRAMEWORK

The algorithm used in this paper uses the concept of greedy

algorithms. In the following section, both the concept of a

greedy algorithm and the game Overcooked will be explained.

A. Greedy Algorithms

Greedy is an algorithmic paradigm based on taking the best

decision on each step. At each step, greedy algorithms look for

the most locally optimal decision, in hopes to get the most

globally optimal solution [3].

There are several components that make up a greedy

algorithm [3].

1) Candidate Set

A candidate set refers to a set of actions which can be done.

These actions or are the “building blocks” in generating the

solution. Each of the actions usually have a clear difference

such that one can be considered more optimal than another at

certain conditions. The candidate set is usually defined by the

problem. Alternatively, a greedy algorithm can generate

candidate sets for a problem accordingly.

2) Solution Set

A solution set consists of the sets of steps that will lead to

the desired goal. Each of these steps may be equivalent or

different to one another in terms of cost. The cost of a solution

is counted by the total cost of each actions taken to reach the

goal. From this, we can say that the goal of a greedy algorithm

is to pick out the cheapest solution from this set that it can find.

3) Selection Function

A selection function in a greedy algorithm is the

determining part of the algorithm. This function picks out the

locally optimal function required to reach the goal. Selection

functions first calculates the cost of each action. Then, it picks

out the action with the smallest cost to be executed. The

selection function should always find the most locally optimal

action. However, in several greedy algorithms, these steps may

not be the most globally optimal actions, as greedy algorithms

work with actions those are “right in front of them.”

4) Feasibility Function

The feasibility function of a greedy algorithm decides

whether an action could be done or not. The purpose of this

function is to prevent taking an action that does not lead to a

solution. Note that this function, like the selection function,

may not work on a “global” scale, as there are feasibility

functions in some greedy algorithms that may falsely decide

that an action can lead to a solution.

Usually, at each step, greedy functions will run the selection

function to get a candidate action the algorithm will do. This

candidate action will then go through the feasibility function to

check whether said action could be run. If the action is not

feasible, the algorithm will go through the selection function

again to find another action.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

5) Objective function

An objective function refers to the overall goal of a greedy

algorithm. This function usually returns the most optimum

result of a problem. We can conclude whether a greedy

algorithm is optimal for a certain variation of a problem by

comparing the result to the objective function. If the result of a

greedy algorithm is equal to the objective function for all

variations of a problem, we can infer that the algorithm is

optimal.

B. Graphs

Graphs are used to represent a set of objects and the

relations between them [4]. There are two main components of

a graph: vertices and edges.

1) Vertices

Each vertex or nodes in a graph represents an object defined.

These objects may represent a value, data, or anything else.

2) Edges

Edges define the relation of each vertices. In other words, it

defines the connection between the objects it connects to.

Similar to vertices, although not required, edges may contain a

value. These values usually represents the weight of the edges.

Edges can also have a direction. Graphs with edges with

direction is called a directed graph, graphs with one-way

relationships. The relationship between vertices can be one-

way, bidirectional, or even to itself.

C. Overcooked

Overcooked is a game developed by Ghost Town Games

and published by Team 17. This is a cooking simulation game

that provides a local cooperative multiplayer experience. In this

game, players must work together to complete orders under a

time limit whilst overcoming obstacles and avoiding hazards.

Each player is assigned a chef. Each chef can be moved

around the kitchen and interact with certain objects to

accomplish tasks. There are several actions and tasks in this

game, which can be categorized into two types, based on the

task duration.

1) Instant and automatic tasks

This category includes actions that does not require much

effort to execute. Most of these actions are instant tasks, which

means it can be completed instantly. Other events are

automatic, which does take time, but does not require any chefs

to actively attend to it. There are several actions that fall into

this category.

a) Taking Objects: This action refers to picking up

objects to be delivered to another location. Objects can be

picked up from any workstations, counters, conveyor belts, or

from ingredient crates.

b) Putting Objects: Puts an object on a counter, a

workstation, or a conveyor belt. This action can be done for

three reasons: setting up an object to be used on another action,

move away clutter, or passing around objects for more efficient

delivery.

c) Cooking: This is one of out of the several most

essential actions in Overcooked. This action is required to cook

most recipes in overcooked. Cooking can be in the form of

boiling, grilling, and frying with each action requiring a pot,

pan, and net respectively. Ovening is also part of this, but does

not required any other tools. Cooking is also an action that

occurs on a timer without requiring a chef’s attention.

d) Plating: After the food or part of it has completed

cooking, it needs to be served on a plate. In some recipes, the

food must be assembled on top of the plate, such as burgers and

fish-and-fries.

e) Serving: The plated food needs to get served to the

customer. This is done by delivering the food to the…

f) Pushing Buttons: On some levels there are some

moving environmental elements that require chef’s attention.

These elements are interacted using buttons. Some of these

button can move the ground, while some can alter conveyor

belts.

g) Throwing away: If in any case a wrong ingredient has

been put into the wrong food, or if there is too much clutter,

then it is advised to throw away these objects. Throwing away

food in a container, such as in pots or pans, does not throw away

the container itself.

2) Active tasks

This category includes actions that require active attention

of a chef. Some actions require holding the interact button for

the during the course of the action, although most do not. There

are several actions that fall into this category.

a) Delivering Objects: Despite the name of the game,

delivery is also one of the most coreactions to fo in Overcooked.

This is the action of moving objects around. Different types of

workstations are usually placed far apart. This proposes a

challenge for the chefs, as most of the obstacles and hazards in

this game is based around traversing the kitchen. Delivery

always involve taking objects and putting down objects.

Delivery can be split into two strategies. One strategy is

to bring the object through the kitchen alone. This is probably

the most common strategy as it is the most straight forward.

Another strategy is to place it on a counter or conveyor belt to

be picked up by another chef. In other words, chefs can pass

ingredients across counters for faster delivery.

b) Chopping: Most recipes in Overcooked also requires

an ingredient to be chopped. Chopping ingredients requires the

chef to be on a chopping board. This workstation does not

require any other tools.

c) Washing: Most levels in Overcooked requires chefs to

clean dishes. Washing dishes is the most common obstacle, as

it usually breaks the flow of the chefs.

d) Extinguishing: If a cooking is not taken out for a long

time after being completed, the food can become burnt and will

result in a fire. Fire can spread throughout the kitchen and thus

must be quickly extinguished. Extinguishing a fire requires the

use of a fire extinguisher – placed somewhere in the level – and

the interact button must be pressed throughout the action.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

III. PLAYING OVERCOOKED USING A GREEDY APPROACH

The following greedy algorithm will factor in several aspects
of the game. To make understanding the algorithm, this paper
will use level 1-1 as an example scenario.

A. Generation Function

The following greedy algorithm will be based on the time it
takes to do a certain task. Because there are quite a lot of actions
that each agent/chef, the algorithm will use a generation function
to generate only the required actions based on the current orders.

Each order can be divided into individual physical
requirements. The requirements of the order can be laid out in a
graph. For example, the graph of a simple onion soup is as
follows:

Figure 1 Onion Soup Creation Graph

 There are several indicators on each node. The green-
outlined nodes represent a state of the food. The blue-outlined
nodes, on the other hand, represent a tool or a required object
which is not part of the food. Unless stated otherwise, the graphs
in all figures are assumed to be directional with the upper node
pointing to the node below, even though there are no arrows
drawn in each graph.

Each of these states will also have an action requirement.
Most of these actions will include moving the food or an
ingredient to one place or another. Similar to the above physical
requirements, action requirements can also be laid out in a graph.
For example, to get a “cooked onion soup in a pot”, there are
several steps that can be done.

Figure 2 Cooked Onion Soup in a Pot Action Graph

As seen here, each chopped onion must be brought from the
chopping board to the stove. However, the pot itself, other than
being required to be brought to the stove, it might also need to
be emptied by serving the food on a plate.

After adding action requirements, the overall graph of a
menu might look like the following:

Figure 3 Onion Soup Complete Creation Graph

For simplicity, some elements of the graph might be omitted
from this point forth.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

B. Selection Function

The selection function will choose one of the first four

required food state on the graph, ordered by order number,

reading left to right, top to bottom on the graph. The number

four is arbitrary, but it is acceptable as it is not too little to limit

the choices, and not too much to create ineffectiveness.

From each of the food states, the selection will pick the least

time-consuming action for the executor and his co-workers.

There are different things to consider when referring to specific

actions.

1) Instant/Automatic Actions

These types of actions are preceded by carrying the object

and should immediately be executed after it is delivered. There

are two exceptions to this. Taking ingredients from a crate

cannot be preceded by delivering an object. However, it should

immediately follow the delivery of an ingredient. Another

exception is the passing of objects. Passing an object to one

another through a counter will be covered on a later section, as

it is very closely related to the delivery of objects.

2) Active Actions

Excluding delivery, picking an active action must consider

the time it will take to complete the task. On the case of washing

dishes, the plates should all be washed up in one go.

3) Delivering Objects

There are several reasons for why an agent might want to

deliver an object:

a) Do a task that requires the object

b) To bring an object closer to a task, unrelated to the task

the chef aims to do, but close in terms of distance

Determining the time it takes to deliver an object requires a

pathfinding algorithm, which is outside the scope of this paper.

Some of the popular path finding algorithms in games are

Dijkstra’s Algorithm and A* Algorithm. Any of those

algorithms are acceptable, as long as the values are tuned to

match the game.

Another decision a chef must make is whether to fully

deliver the object by him/herself or whether to pass the

ingredient to another chef. In this algorithm, there are several

things we will consider. When going for delivering alone, the

one extra thing to consider is the time it takes to do another

action. When going for passing the object, we will need to

consider the time it takes for someone else to continue

delivering the object.

When delivering alone, we will use the following time spent

equation:

 𝑐𝑜𝑠𝑡 = 𝑐(𝑥) (1)

When passing the object, the following time spent equation

applies:

 𝑐𝑜𝑠𝑡 = min(𝑐(𝑥) + 𝑑(𝑧)) + 𝑓(𝑦) (2)

Where

𝑐(𝑥) is the time spent to move to the destination,

𝑓(𝑦) is the time spent for the chef to complete another task

as shown in (3),

𝑑(𝑧) is the remaining time for the other chef to complete its

current task and reach the passed object.

That formula essentially counts the time it takes for the

object to reach its destination. The action with the least cost is

the action that will be taken into account by the selection

function. It is worth noting that if the latter action is run, the

other chef will not run their selection function once they finish

their task – they will immediately help pass the object.

4) Reaching the Task

Like delivering objects, the cost/time of reaching a task can

be calculated by a path finding algorithm.

All these aspects those are needed to be considered can be

summed up using the following equation:
 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) (3)

Where

𝑓(𝑥) is the total time spent to complete the task,

𝑔(𝑥) is the time spent to do the task, and

ℎ(𝑥) is the time spent to reach the task.

Note that in some tasks, 𝑔(𝑥) is not defined – such as

delivering an object. In which case, we omit 𝑔(𝑥) and replace

it with a zero.

C. Feasibility Function

A task is considered feasible if it does not result in the

failure of a temporally constrained task. This function will go

through all the chefs in the game and will check the following.

1) Current Chef

If the chef that is currently being assigned the task can

complete the task and complete the temporally constrained task

within its time constraint, then the task is considered feasible

2) Other Chef

If another chef can complete their current task and complete

the temporally constrained task within its time constraint, then

the task is considered feasible.

However, if there are multiple temporally constrained tasks,

then the function will loop through each constrained task. For

example, in the case of two constrained task, a chef may be able

to complete both constrained tasks. Another possibility is that

two different chefs may be able to complete a task each. If

neither possibility is achieved, then the task is unfeasible.

IV. EXAMPLE GAME SCENARIO

As an example, we are going to use level 1-1. This level

should be enough to give context on how this algorithm work.

A. Delivering Alone or Passing Around

Figure 4 Level 1-1 Layout

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

At the start of the level, the players are given an onion soup

order. Thus, the algorithm generates the following set of tasks.

Figure 5 Tasks List at the Start of Level 1-1

The blue chef runs the algorithm first (assuming the chefs

do not run on a parallel manner). Because the only task

available is delivery, he will go grab an ingredient from the

crate and deliver the onion to the chopping board. Also, because

no players are assigned on the other side, he will do the task

alone.

The red chef will also deliver the onion, as it is still the only

job available. Likewise, she will also deliver it alone, as there

are no people on the other side.

Figure 6 Delivering Both Onions

After both players have chopped the onions and delivered it

to the pot, the blue chef goes back to the crate to deliver the

food. However, as the red chef is now idle, she can now help

The blue chef because it is faster to pass then letting the blue

chef carry it alone. After delivery, because she is the closest to

the chopping board, she will chop the onion as well.

Figure 7 Getting the Third Onion

After chopping the onions, the red chef will be tasked with

delivering the chopped onions to the pot again. As with the

previous delivery, she will pass it on to the blue chef because

he is already positioned on the other side of the counter.

After the pot has been cooked, he will deliver the pot of soup

to the plate alone, as he can reach the plate without any

obstructions. After doing so, he will also serve the order alone.

Next, the red chef is going to get more onions from the crate

for the new order. Meanwhile, the blue chef is going to wait

next to the counter, because it is faster for her to pass the onion

than delivering it alone.

B. Misplaced Pots

After the first menu is served, the cooking pot would not be

on top of the stove, because it was moved next to the served

plate.

Figure 8 Scenario with Misplaced Pot

On this state of the game, after serving the first order, the

tasks queue will have the following contents.

Figure 9 Tasks List with Misplaced Pot

After the blue chef has finished chopping, he will move the

ingredients straight to the pot, before taking the pot back to the

stove. Note that the blacked out nodes are not available because

the prerequisite item does not exist yet, and the yellow-outlined

node is undergoing.

C. Washing the Dishes

Further into the game, the chefs are going to have to wash

the dirty dishes. Here is the first occurrence of having to wash

dishes.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Figure 10 Scenario with Dirty Dishes

At this point in the game, the algorithm would have the

following actions to pick.

Figure 11 Tasks List with a Non-Optional Dish Washing Task

Here, the blue chef is required to take the dishes from the

counter to the sink. Notice that there is a cross on the line

between the plate and the delivery node. The cross indicates that

the action is invalid, because there are no clean dishes available.

V. CONCLUSION

After testing the previous algorithm on level 1-1, we can

conclude that the algorithm is enough to get three stars on the

level. However, looking at the actions the algorithm picked and

comparing the results to human gameplay, there are several

points that could be improved.

1) Planning ahead

When the menu of the level requires the same ingredients

and steps to prepare, a common strategy is to do the repeated

actions in advanced. The reason is to have the items prepared

for the next stage of cooking when the chefs come around to do

it. Currently, the proposed algorithm does not handle this

efficient strategy, and so it can be improved to consider this.

For example, in Point A of Section IV, there are some parts

where either chef was waiting for another to finish a task. This

is quite inefficient, as in further levels, the chefs are not going

to be able to obtain three stars if they become idle from time to

time.

2) Stockpiling

Stockpiling refers to the act of delivering a batch of items

that is required by a task closer to the place the task is done.

This is more efficient than the delivery system defined in the

algorithm, as doing tasks in batches is usually a faster workflow

in Overcooked.

For example, in level 1-1, the middle counter is the perfect

place to put ingredients closer to the chopping table. Instead of

coming back to the ingredients crate so often, a chef can put as

much onions as it can on the middle counter.

Figure 12 Example of Stockpiling

Other than stockpiling ingredients, dishes can also be

stockpiled. The countdown timer in several kitchens does not

tick down before the first order is served, like in level 1-1.

Because the order in these levels can be predictable, it is wise

to stock up the dishes before serving it at the start of the level

to give the cooks a head start in terms of points.

3) Roles system

Another strategy in Overcooked is having chefs assigned to

certain roles. These roles are defined actions those are done

multiple times repetitively. This strategy can be beneficial to

make sure tasks that is required for most menu is done often.

Tasks those are less frequent are grouped and assigned to a chef.

This strategy is quite common especially because it is harder

for humans to handle keep track of multiple jobs at once.

However, it is unwise for one to not adapt to the situation and

hold their roles to do other more important tasks. This is the

challenge of considering this strategy, as it is hard to balance

between doing tasks in their roles and other important tasks.

For example, with two players in level 1-1, one chef can be

assigned with chopping onions and the occasional serving. The

other chef can be assigned the less time-consuming actions,

such as stockpiling, cooking, and washing dishes.

4) Zoning system

Similar to assigning roles to chefs, zoning is also a valid

strategy. This strategy aims to reduce the amount of moving

done by chefs. In later levels, this strategy is somewhat forced

because of the level layout.

This strategy can be harder for an average human to do, as

the tasks in a zone may change overtime because of the nature

of overcooked levels. However, this strategy might prove to be

effective for computers if it is able to efficiently select the

actions to do.

Other than the inefficiency stated, there are other down sides

to this algorithm. Even though the algorithm can obtain three

stars in level 1-1, it is proven obtain less than three stars in most

other levels. The failure in obtaining three stars is most visible

on levels with moving obstacles. Furthermore, some levels and

cases may break the algorithm.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

For example, this algorithm has not taken fires into account.

If at any point an accident happened and the algorithm was not

able to get a chef to resolve the problem in time, fire may occur.

If the fire spreads to quickly, it is much better to restart the

whole level than to resolve the issue.

Figure 13 Fire Spreading Scenario

Another case is, if the level contains moving counters, an

area might become unavailable to all chefs for a period of time,

or the chefs might be stuck to an area. This is because the

algorithm does not currently have cases for when a task is

stationed at a moving floor tile or in the way of a moving

counter. For cases like these, the algorithm might do a simple

check and hold their task to evade these hazards.

From the previous statements, it can be concluded that the

proposed algorithm is not efficient. This conclusion is to be

expected because of the nature of greedy algorithms not being

able to solve complex problems in an efficient manner,

especially on problems with a lot of factors to be considered.

VIDEO LINK AT YOUTUBE

The following link contains a video with a simpler
explanation on this topic.

https://youtu.be/wOWwLxQZqUY

ACKNOWLEDGMENT (Heading 5)

The author would like to thank Dr. Nur Ulfa Maulidevi, ST.,
M.Sc. for her guidance through out the course of this semester
in IF2211 Algorithm Strategies, as well as the whole lecturer
team of IF2211 Algorithm Strategies. In addition, the author
would like to thank his family and friends for their support in
finishing this paper.

REFERENCES

[1] DeepMind, “AlphaGo”, https://deepmind.com/research/case-studies/
alphago-the-story-so-far, accessed 30 April 2020.

[2] OpenAI, “OpenAI Five”, https://openai.com/projects/five/, accessed 30
April 2020.

[3] R. Munir, “Algoritma Greedy”, http://informatika.stei.itb.ac.id/~rinaldi.
munir/Stmik/2019-2020/Algoritma-Greedy-(2020).pdf, accessed 26
April 2020.

[4] R. Munir, “Teori Graf”, http://informatika.stei.itb.ac.id/~rinaldi.munir
/Matdis/2015-2016/Graf%20(2015).pdf, accessed 30 April 2020.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 1 Mei 2020

Chokyi Ozer - 13518107

https://youtu.be/wOWwLxQZqUY
https://deepmind.com/research/case-studies/%20alphago-the-story-so-far
https://deepmind.com/research/case-studies/%20alphago-the-story-so-far
https://openai.com/projects/five/
http://informatika.stei.itb.ac.id/~rinaldi.%20munir/Stmik/2019-2020/Algoritma-Greedy-(2020).pdf
http://informatika.stei.itb.ac.id/~rinaldi.%20munir/Stmik/2019-2020/Algoritma-Greedy-(2020).pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir%20/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir%20/Matdis/2015-2016/Graf%20(2015).pdf

