
Content-Aware Image Resizing using Dynamic
Programming

Michel Fang 13518137​1
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

1​mfang555@gmail.com

Abstract​—To display an image on media with various sizes,
more often than not we will need to resize the image accordingly.
Conventional image resizing techniques often distort the image or
crude the image details, and cropping the image may trifle away
the image novelty. In this paper, we will take a look at
content-aware resizing that considers the image content,
eliminating or adding part of the image that is of least interest.
This method is made possible using seam carving which presents
an interesting application of dynamic programming.

Keywords—image resizing; content-aware image resizing;
image manipulation; image retargeting; seam carving; dynamic
programming

I. I​NTRODUCTION
Today, devices have various display sizes, this poses a

challenge on how to display media content responsively.
Websites and mobile applications support dynamically
changing the property of each component, this is contrast to
the rigidness of image resizing.

Image resizing is a standard procedure that can be done by
many image processing applications. Usually, an image is
uniformly shrunk down or enlarged to fit a target size.
Standard image scaling methods diminish the quality of the
image, and traditionally cropping the image can only be done
on the border of the image. A better approach is to eliminate
parts of the image that have least details such that it does not
diminish the quality of the image when its size is altered.

In this paper, we will take a look on content-aware image
resizing using seam carving, proposed by Avidan, S and
Shamir, A [1]. This approach allows resizing without losing
significant quality and meaning of the image, this is done by
assigning an energy value to each pixel and locating optimal
seams, a path of pixels going from one edge of the image to
the other. Calculation of such seams utilize dynamic
programming, a versatile concept that is utilized elegantly in
this problem. We will also take a look at an improvement of
this algorithm using formard energy calculation, which takes
into account the new energy values of removed or added
seams [2].

II. I​MAGE​ R​ESIZING

A. Interpolation Algorithms
In mathematics, interpolation is a form of constructing a

new value using an already known set of values. An image
interpolation occurs when an image is resized, distorting the
image from one pixel grid to the other. Image interpolation
tries to achieve the best approximation of a pixel’s density by
using values on the surrounding pixel.

One of the simplest interpolation algorithms is
nearest-neighbor interpolation, this algorithm replaces every
pixel with the nearest pixel in the target output. This algorithm
preserves fine details in pixel art images, but introduces
artifacts in previously smooth images called jaggedness or
’jaggies’, jaggies are stair-like lines that appear where a
smooth curve should be.

Another interpolation technique is bilinear interpolation,
this algorithm interpolates pixel color values, thus creating a
continuous transition in the output image. This algorithm
reduces contrast because of the introduced continuous
transition, softening the details. Jaggedness may still be
present in the output image.

Figure 1: An image of a green shell interpolated by
nearest-neighbour interpolation (left) and bilinear interpolation

(right)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

B. Scaling and Cropping
Scaling a picture means applying scaling algorithms, some

of which are explained before, to an image. Scaling causes
distortion of the image which causes some objects to be
widened or thinned.

Cropping is the removal of unwanted outer areas from the
picture. Cropping is used to remove unwanted outer parts of
the picture, alter the aspect ratio, or to isolate the subject of the
picture from the background. Resizing an image can also be
done with cropping, this maintains the quality of the image but
removes part of the image.

Figure 2: Picture of a broadway tower

In the following example, we are trying to narrow the
picture of a broadway tower. We can see that scaling results in
the tower being distorted, and cropping causes part of the
castle to be removed.

Figure 3: Undesirable result of scaling (left) and cropping
(right)

III. C​ONTENT​-A​WARE​ R​ESIZING

A. Overview
Content-aware resizing is a resizing technique that resizes

the image without changing important visual content such as
the objects in the image. The resizing process only affects
pixels in areas that are not too important. This technique
consists of mapping energy values, finding optimal seams, and
removing or inserting seams.

B. Calculating Energy Map
By intuition, we should remove pixels that blend with the

surrounding, the problem is how to pick such pixels? We can
use the following energy function to calculate the value for

each pixel, which is simply the absolute value of the image
gradient in both x and y directions.

(I) | | |e = ∂I
∂x + | ∂I

∂y (​1​)

Calculating the actual gradient of the image can be done
using several operators, such as Sobel Operator or Scharr
Operator.

.Figure 4: Edge detection of an image with Sobel filters [4]

C. Seam
Seam is an 8-connected path of pixels in the image from

top to bottom, containing one, and only one, pixel in each row
of the image [1]. Removing seams instead of removing
disjoint pixels from each row preverses the rectangular nature
of the image. Formally, a vertical seam for an image ​I ​of size

 isn × m

 (​2​) {(x(i),)} ∀i, x(i)−x(i−1)| ≤ 1sx = {s }i
x n

i=1 = i n
i=1 |

where x is a mapping

 [1, ..,] → [1, ..,] x : . n . m

we can also define a horizontal seam in a similar manner.

The coordinate for the vertical seam pixels are

 (​3​){I(s)} {I(x(i),)} Is = i
n
i=1 = i n

i=1

When we remove a seam, all the pixels are shifted by one
position (horizontally or vertically, respective to the seams) to
compensate for the lost seam. Now, we need to find the
optimal seam to be removed, let be the cost of the seam,(s) E
then we can find the optimal :s*

 (​4​)(s) (I) (I(s))E = E s = ∑
n

i=1
e i

 (​5​) E(s) min (I(s))s* = mins = s ∑
n

i=1
e i

The optimal seam can be found using dynamic programming,
as we will later see in IV.

D. Seam Removal and Insertion
To remove a seam, we can just loop for each pixel in s*

and shift the image matrix left or up respectively. Seam
insertion is simply an inversion of seam removal, since the
optimal seam consists of pixels that blend with their

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

neighbouring pixels, we can insert another seam with similar
pixel values to their neighbours. This inserted pixel value can
be the average of the left and right pixel neighbours.

Figure 5: Original picture (left), seam visualization
(center), carved picture (right)

IV. D​YNAMIC​ P​ROGRAMMING

A. Overview
Dynamic programming is a problem solving paradigm by

decomposing solutions into several stages [5]. The solution
can be viewed as a solution of smaller problems (state) that is
achieved through a series of decisions (transitions).

B. Characteristics
In dynamic programming, decisions are made based on the

optimality principle​; if the final solution is optimal, then the
solution for the ​k​-th step is also optimal.

According to [5], these are the characteristics of a dynamic
programming problem:

1. A problem can de defined as a set of stages, where in
every stage a decision must be made

2. Each stage consists of a set of states that is
connected. A state is a possible decision that can be
made during a certain step and can be modelled as a
graph

3. Result of the decision taken within each step is used
to transform the state to be used for the next stage

4. The cost in each step increases steadily and depends

on the cost of previous steps

A dynamic programming solution can be done bottom-up
or top-down. In bottom-up, we construct the solution table
from the base case to the full solution, usually populating the
entire table. In top-down, we make a recursive call to a
subproblem, then eventually reaching a base case, top-down
usually only populates the solution table as necessary. In
either approach, we similarly define a state as a function, as
seen in the fibonacci example

 (base case)(0) f = 0

 (base case)(1) f = 1

(i) (i) (i), i f = f − 1 + f − 2 > 1

C. Seam Finding
Let the image be an grid with each tile representing n × m

a pixel with energy value (i, j) e

Figure 6: Image represented as a grid

Then we can define to be the minimum cost of a(i,) f j
seam path, starting from to , where is some0, l) (i,) (j l
column in the first row.

 (base case)(0,) (0,), ∀j, 0 f j = e j ≤ j < m

(i,) (i,) in(f (i ,), f (i ,), (i ,)) f j = e j + m − 1 j − 1 − 1 j f − 1 j + 1

We also need to be careful when taking care of a pixel that is
on the edge of the grid.

From (5), then the optimal seam path cost is

j)),ost in (f (n ,c = m j − 1 ∀j 0 ≤ j < m

After we get the optimal cost of a seam, we can get all of the
pixel coordinates by backtracking from the last row to the first
row, and writing down the coordinates as we go along.

V. I​MPLEMENTATION

To test the result of this algorithm, I have made an
implementation in Python with a simple image picker GUI
made with PyQt5.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Figure 7: Application interface

To transform an image into a grid of numbers, OpenCV
library was used along with NumPy for array heavy
computations. Numba library was used to speed up the
computations, as it translates the code into fast machine code
using LLVM.

Below is the carve function that utilizes previously explained
algorithms

def carve(self, r, c):
 # im is the original image
 ro, co = self.im.shape[:2]
 dc = c - co
 dr = r - ro

 if dc != 0:
 if dc < 0:
 self.seams_remove(-1 * dc, False)
 else:
 self.seams_insert(dc, False)

 if dr != 0:
 self.im = self.rotate_ccw(self.im, True)
 if dr < 0:
 self.seams_remove(-1 * dr, True)
 else:
 self.seams_insert(dr, True)
 self.im = self.rotate_ccw(self.im, False)
 cv2.imshow("Carver", self.im.astype(np.uint8))
 cv2.waitKey(1)

The energy calculation in the implementation uses Scharr

Filter, which performs similarly to the Sobel Filter. To further
improve the algorithm, I enforced forward energy calculation
that was defined in [6] as a follow up to the original paper [5].
The forward energy calculation considers the resulting energy
after a removal or insertion, since removing a low-energy

pixel pushes two pixels together, and may increase the image
energy greatly. The details of forward energy calculation can
be found in [6].

To show the seams chosen for every changed width or
height, a show function was implemented. This function
colors each seam red as it is being removed from the image, it
is called every time a seam deletion or insertion occurs to the
image

def show(self, rotate, marker=None):
 tmp = self.im.astype(np.uint8)
 if marker is not None:
 r, c = tmp.shape[:2]
 for i in range(r):
 c = marker[i]
 tmp[i, c] = np.array([0, 0, 255])
 if rotate:
 tmp = self.rotate_ccw(tmp, False)
 cv2.imshow("Carver", tmp)
 cv2.waitKey(1)

Further demonstration of the application and other details can
be seen in the Youtube video.

Figure 8: ‘show’ function in action. Removing 1st (top), 2nd

(middle), and 3rd (bottom) seams

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

VI. R​ESULT

As expected, the seam carving algorithm works marginally
better than previous methods. Below is an example of
horizontal shrinking with seam carving

Figure 9: Picture to be made narrower

(Source: Breaking Bad)

Figure 10: Horizontal shrinking. Scaling result (left) and
seam carving (right) result

Horizontal expanding also looks better

Figure 11: Horizontal expanding. Scaling result (top) and
seam carving (bottom) result

We can also shrink or expand pictures vertically, in the
implementation, this was done by temporarily rotating the
image 90°, applying the algorithm, and then rotating back to
restore the original image orientation. In the following
example, a different picture is used to demonstrate vertical
size change of the picture

Figure 12: Picture to be made shorter

(Source: The Mandalorian)

Figure 13: Vertical shrinking. Scaling result (left) and
seam carving (right) result

Notice that the subject of the picture (the mandalorian) is not
shrunk with seam carving, providing greater clarity of the
image. However, there is a deformation of the sun behind the
subject. To exclude an object with less details to be chosen for
a seam, we can use an object mask.

The idea of an object mask is to set the individual energy
value of the object to a specific value, to ‘trick’ the dynamic
programming. If we want to preserve the object, we set the
energy of the object pixels to be a really high value, and set it
to a really low value if we want to remove it. I didn’t
implement this feature in my implementation.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Figure 14: Picture with objects to be removed [6]

Figure 15: Object mask (left) and the final image (right)
[6]

There are still many improvements that can be made to my
implementation of this algorithm, the main one is using an
object mask for object targeting or removal, making the mask
can be done by adding a ‘canvas’ of the picture and a brush on
the GUI highlight the object on. The highlighted pixels value
can then be set appropriately depending on the need.

In this paper, we have seen how content-aware image
resizing resizes an image by preserving content focus, how the
seam carving algorithm works in conjunction with dynamic
programming, and several tweaks that can be enforced to
further tweak the performance of these methods.

V​IDEO​ L​INK​ ​AT​ Y​OUTUBE
As part of this paper, a Youtube video was made to better

explain and demonstrate the implementation of seam carving.
The video can be found at ​https://youtu.be/cMkUT4mbjvE​.
The project repository will be publicly available on my github
page at ​https://github.com/littlemight not long after the
publication of this paper.

A​CKNOWLEDGMENT
I would like to express my gratitude to Mrs. Nur Ulfa

Maulidevi, Mrs. Masayu Leylia Khodra, and Mr. Rinaldi
Munir as our lecturer in Algorithm Strategy Course for the
knowledge that they shared upon us. I also would like to thank
my family and friends for helping and supporting me in the
creation of this paper. I also would like to thank everyone
whose open source projects and/or tutorials have helped me
implement this simple demonstration of content-aware image
resizing.

R​EFERENCES
[1] G Avidan, Shai; Shamir, Ariel (July 2007). "Seam carving for

content-aware image resizing | ACM SIGGRAPH 2007 papers".
Siggraph 2007: 10. ​dl.acm.org/doi/10.1145/1275808.1276390

[2] Rubinstein, M., Shamir, A., & Avidan, S. (2008). Improved seam
carving for video retargeting. ACM SIGGRAPH 2008 Papers on -
SIGGRAPH 08. ​dl.acm.org/doi/10.1145/1399504.1360615

[3] Anbarjafari, G. (n.d.). 3. Resizing image. Retrieved May 1, 2020, from
https://sisu.ut.ee/imageprocessing/book/3

[4] Ashish. (2018, September 26). Understanding Edge Detection (Sobel
Operator). Retrieved May 1, 2020, from
https://medium.com/datadriveninvestor/understanding-edge-detection-so
bel-operator-2aada303b900

[5] Munir, Rinaldi. Diktat Kuliah IF2211 Strategi Algoritma. Program Studi
Teknik Informatika ITB.

[6] Chan, L. (n.d.). Project 2: Seam Carving. Retrieved May 1, 2020, from
http://www.cs.cmu.edu/afs/andrew/scs/cs/15-463/f07/proj2/www/lisacha
n/

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Mei 2020

Michel Fang, 13518137

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

https://youtu.be/cMkUT4mbjvE
https://github.com/littlemight
https://dl.acm.org/doi/10.1145/1275808.1276390
https://dl.acm.org/doi/10.1145/1399504.1360615
https://sisu.ut.ee/imageprocessing/book/3
https://medium.com/datadriveninvestor/understanding-edge-detection-sobel-operator-2aada303b900
https://medium.com/datadriveninvestor/understanding-edge-detection-sobel-operator-2aada303b900
http://www.cs.cmu.edu/afs/andrew/scs/cs/15-463/f07/proj2/www/lisachan/
http://www.cs.cmu.edu/afs/andrew/scs/cs/15-463/f07/proj2/www/lisachan/

