
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Solving Binary Puzzles Using Brute Force Algorithm

and Backtracking Algorithm

Andjani Kiranadewi/13518109

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13518109@std.stei.itb.ac.id

Abstract—Binary Puzzle is a logic puzzle where the objective

is to fill the empty cells with either 0 or 1 while still conforming to

the rules where each row and column are unique, has equal

numbers of 0s and 1s, and there are no more than two same

numbers adjacent horizontally nor vertically to each other.

Keywords—backtracking algorithm; binary puzzle; brute force

algorithm;

I. INTRODUCTION

A puzzle is a type of a game that tests a person’s
knowledge by challenging them into solving it. People often
need to put all the hints provided together in a logical manner
to solve a puzzle. It is often used as a form of entertainment,
something to waste time on.

There are multiple categories of puzzles. For example,
jigsaw puzzle, which is probably the most well-known out of
all, where all of the pieces of a jigsaw puzzle need to be put in
a certain way to get the complete picture. There is also
mathematical puzzle, where to find the solution, mathematical
skills are required. Another popular type of puzzle is logical
puzzle, where to solve the puzzle, logical thinking is needed.

This paper will discuss a type of logic puzzle, which is
binary puzzle, and a way to solve it using two types of
algorithm: brute force algorithm and backtracking algorithm.

II. BASE THEORIES

A. Binary Puzzle

Figure 1. An example of a binary puzzle (Source:
http://www.binarypuzzle.com/)

Binary puzzle, also known as Binairo, Takuzu, Tohu-wa-
Vohu[1], or Binaire Puzzels[2] is a type of logic puzzle where
the objective is to fill the grid, usually square-shaped with even
amount of cells each row and column, with two symbols, often
0s and 1s, hence the name “binary puzzle”.

At the start of the puzzle, the grid will be partially filled to
serve as a hint of the puzzle. From the hint provided, the player
must complete the grid with one of the two symbols, while
obeying the rules of the puzzle.

Binary puzzle has several rules:

• More than two equal numbers can’t be adjacent to each
other, vertically nor horizontally.

• Each row and column must be unique

• Each row and column must contain equal numbers of
both symbols [3]

B. Brute Force Algorithm

The brute force algorithm is an algorithm that “brute
forces” its way to find the solution. It is an obvious way to
solve a problem.

There are several characteristics of a brute force algorithm:

• It is not a ‘smart’ and effective solution since
solving using the brute force algorithm usually
requires a lot of computation and time.

• It is better used for small scale problems.

• Almost every problem can be solved using the
brute force algorithm [4]

Example usage of the brute force algorithm is array sorting
using bubble sort. This method of sorting simply swaps
adjacent elements if it is in the wrong order. Such a method has
the time complexity of O(n2), which can be improved by using
several tricks, which will not be discussed in this paper.

http://www.binarypuzzle.com/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Figure 2. Visualization of bubble sort (Source:
https://gubuktekno.com/program-bubble-sort-bahasa-c/)

C. Backtracking Algorithm

The backtracking algorithm is an optimization for
exhaustive search. Unlike exhaustive search, which explores all
of the possible solution available, backtracking algorithm
builds up the solution one step at a time using a recursive
method, while abandoning (backtracks from) any candidate
solution that impossible to create the final, valid solution from.
The term ‘backtrack’ itself was coined by D.H. Lehmer in the
1950s [5].

There are three properties of a backtracking algorithm:

1. Solution of the problem

Solution is represented as a n-tuple: X = (x1 , x2 , …, xn),

xi  Si. It is possible that S1 = S2 = … = Sn.

2. Generating function

The generating function for xi is represented as a predicate
T(i), which will generate xi for the solution component.

3. Bounding function

The bounding function is represented Predicate
B(x1,x2,…,xn). B is true if xi leads towards a valid solution and
false if it is not.

 Backtracking algorithm’s basic method of finding a
solution is as follows:

1. Start with an empty solution set S. S = {}

2. Add to S the first move that is still left (All possible moves
are added to S one by one). This now creates a new sub-
tree s in the search tree of the algorithm.

3. Check if S+s satisfies each of the constraints in C.

4. If Yes, then the sub-tree s is “eligible” to add more
“children”.

5. Else, the entire sub-tree s is useless, so recurs back to step 1
using argument S.

6. In the event of “eligibility” of the newly formed sub-tree s,
recurs back to step 1, using argument S+s.

7. If the check for S+s returns that it is a solution for the entire
data D. Output and terminate the program.

8. If not, then return that no solution is possible with the
current s and hence discard it [6]

III. SOLUTION USING BRUTE FORCE ALGORITHM

The usage of brute force algorithm for solving binary
puzzles is straight-forward—all possible combination of filled
grid of same size are checked if it is a solution. The
combination is a solution if:

• Abide by the rules stated in section II.A.

• Possible to reach from the original grid.

Because all of the possible combinations of the grid is
checked, the method is highly ineffective. As binary puzzle can
be classified as subset problem, the time complexity for binary
puzzle with the size of nxn is O(2n^2), which means that a 6x6
binary puzzles can have 236 or 68,719,476,736 combinations to
be checked.

There are two basic steps in finding the solution: subset
generation, and validation.

A. Subset generation

Binary puzzle, as its name implies, is a problem involving
an element being in two states. Thus, a binary puzzle can be
represented using a binary digit. Consider the 2x2 binary
puzzle grid of Figure 3.

Figure 3. An example of a 2x2 binary puzzle (Source:
Author’s personal document)

In each cell in the grid, there are only two state: 0 or 1. All
of the possible combination for the grid can be, from the top
left cell to the bottom right cell, ranging from all cells filled
with 0s to all cells filled with 1s.

To generate a subset using a code, the grid can be
‘flattened’ into a 1-dimensional array, instead of 2-
dimensional. From there, a subset can be generated from
number 0 (binary digit 0000) to number 15 (binary digit 1111).
In another words, an nxn binary puzzle can be represented
using binary digits with the length of n2.

https://gubuktekno.com/program-bubble-sort-bahasa-c/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

public int[][] generateSubset(int size, int n){

 int[][] sub = new int[size][size];

for (int i = 0; i < size; i++){

 //i-th element of the flatten grid has

value as 1

if ((n & (1 << i)) > 0){

 sub[i/size][i%size] = 1;

} else {

 sub[i/size][i%size] = 0;

}

}

return sub;

}

B. Validation

The combination acquired from the subset generator need
to be validated for it to be deemed as a solution. As stated in
section IIA, there are three rules for a solution to be counted as
valid.

To do this, every row and column of the grid need to be
checked whether each row is unique towards each other and
each column likewise.

public boolean checkRows(int[][] grid){

 int trueCount, falseCount;

 HashSet<Integer> values = new

HashSet<Integer>();

 int completed = 0;

 StringBuilder current;

 int last;

 int count;

 for (int[] ints : grid) {

 trueCount = 0;

 falseCount = 0;

 current = new StringBuilder();

 count = 0;

 last = -1;

 for (int j = 0; j < grid.length; j++) {

 if (ints[j] != -1) {

current.append(Integer.toString(ints[j]));

 if (ints[j] == 1) {

 trueCount++;

 } else {

 falseCount++;

 }

 if (last == b || last ==

ints[j]) {

 count++;

 } else {

 count = 1;

 }

 last = ints[j];

 if (count == 3) {

 return false;

 }

 } else {

 last = -1;

 count = 0;

 }

 }

 if (current.length() == grid.length) {

 if (trueCount != falseCount) return

false;

values.add(Integer.parseInt(current.toString(),

2));

 completed++;

 }

 }

 return values.size() == completed;

}

public boolean checkCols(int[][] grid){

 int trueCount, falseCount;

 HashSet<Integer> values = new

HashSet<Integer>();

 StringBuilder current;

 int completed = 0;

 int last;

 int count;

 for (int i = 0; i < grid.length; i++){

 trueCount = 0;

 falseCount = 0;

 current = new StringBuilder();

 count = 0;

 last = -1;

 for (int[] ints : grid) {

 if (ints[i] != -1) {

current.append(Integer.toString(ints[i]));

 if (ints[i] == 1) {

 trueCount++;

 } else {

 falseCount++;

 }

 //System.out.println(last+"

"+grid[i][j]);

 if (last == b || last ==

ints[i]) {

 count++;

 } else {

 count = 1;

 }

 last = ints[i];

 if (count == 3) {

 return false;

 }

 } else {

 last = -1;

 count = 0;

 }

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

 }

 if (current.length() == grid.length) {

 if (trueCount != falseCount) return

false;

values.add(Integer.parseInt(current.toString(),

2));

 completed++;

 }

 }

 return values.size() == completed;

}

C. Experiment

The experiment towards brute force approach towards
binary puzzle solving, unfortunately, can only be done, at most,
on a 4x4 puzzle. This is caused by exponential nature of the
amount of combination possible, which is 2n^2. The 6x6 binary
puzzle has been tested, but it took nearly an hour to get the
results.

1. Experiment 1

Input:

Figure 4. Input of 4x4 grid for Experiment 1 of Brute Force
Algorithm

Output:

Figure 5. Output of completed puzzle in Figure 4

2. Experiment 2

Input:

Figure 6. Input of 4x4 grid for Experiment 2 of Brute Force
Algorithm

Output:

Figure 7. Output of completed puzzle in Figure 6

3. Experiment 3

Input:

Figure 8. Input of 4x4 grid for Experiment 3 of Brute Force
Algorithm

Output:

Figure 7. Output of completed puzzle in Figure 8

IV. SOLUTION USING BACKTRACKING ALGORITHM

A. Basic properties

1) Solution of the problem

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

2) Generating function

The generating function T(i,j) generates an integer of
either 0 or 1 for xij if xij is empty (no hint for xij).

3) Bounding function

The bounding function performs three kinds of
operation:

• Adjacency checking

This function returns true if there are no more
than two of the same digits adjacent with each
other, vertically or horizontally, otherwise returns
false.

• Uniqueness checking

This function returns true if all rows and
columns are unique (no sequence are present in
more than one row or column), otherwise returns
false.

• Equality checking

This function returns true if all rows and
columns have the same amount of 0s and 1s. This
can be checked whether the amount of 0 = 1 = n/2,
with n being the number of rows. Otherwise,
returns false.

B. Visualization of the Solution Space

To demonstrate the use of backtracking algorithm to solve a
binary puzzle, Figure 1 will be used as an example.

The root of the solution space, or the 1st node, is the starting
point—the initial state of the puzzle. As x11 is already filled to
serve as a hint, the generating function will generate a value for
x12, starting from 0, which will become Node 2.

Figure 8. Node 2 of the Solution Space

The placement of number 0 is completely valid, as it does
not violate any of the rules. Thus, the generating function will
continue by generating a value for x13, starting from 0, which
will become Node 3.

Figure 9. Node 3 of the Solution Space

This node violates the rule of the puzzle: no more than two
of the same digits adjacent to each other. So, the node is
deemed as a dead node, as it won’t lead to any valid solution.
Since Node 3 is dead, we return (backtrack) to Node 2, and
generate another value for x13, which is 1, which will become
Node 4.

Figure 10. Node 3 of the Solution Space

Now, the solution space is as follows:

Figure 11. Solution Space up to Node 4

Similar method can be used until a valid solution is
found—generate the next value if the bounding function is
satisfied, backtrack to previous node if the bounding function is
not satisfied. Below is the finished solution space:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Figure 12. Finished solution space

Figure 13. Node 40 of Solution Space (Puzzle solution)

C. Code Implementation

The Java code implementation of backtracking algorithm to
solve a binary puzzle are as follows:

public void backtrack(int[][] grid, int i,

int j){

 //i = row, j = column

 int[][] temp = cloneGrid(grid);

 //if all of the cells are filled

 if (i == grid.length) {

 if (checkCols(grid) && checkRows(grid))

{

 printGrid(grid);

 System.exit(0);

 }

 } else {

 //Generating function

 for (int k = 0; k <= 1; k++) {

 if (this.grid[i][j] == b) {

 temp[i][j] = k;

 }

 //if no rules are violated

 if (checkRows(temp) &&

checkCols(temp)) {

 //proceed to the next cell

 if (j == grid.length - 1)

 backtrack(temp, i + 1, 0);

 else

 backtrack(temp, i, j + 1);

 }

 }

 }

}

The bounding function checkRows() and checkCols() are
the ones in section IIIB.

D. Experiments

Since backtracking algorithm prunes the nodes that don’t
lead to a valid solution, the effectiveness is greatly improved.
At the worst case, the time complexity is still the same, which
is O(2n^2).

1. Experiment 1

Input:

Figure 14. Input of 6x6 grid for Experiment 1 of
Backtracking Algorithm

Output:

Figure 15. Output of completed puzzle in Figure 14

2. Experiment 2

Input:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Figure 16. Input of 6x6 grid for Experiment 2 of
Backtracking Algorithm

Output:

Figure 17. Output of completed puzzle in Figure 16

3. Experiment 3

Input:

Figure 18. Input of 6x6 grid for Experiment 3 of
Backtracking Algorithm

Output:

Figure 19. Output of completed puzzle in Figure 18

VIDEO LINK AT YOUTUBE

https://youtu.be/OmXpMgNRTfU

ACKNOWLEDGMENT

The author would like to thank God for giving the author
the ability to finish this paper in time. The author also
expresses gratitude towards Strategi Algoritma professors at
ITB for giving the author knowledge to create this paper.

REFERENCES

[1] https://www.janko.at/Raetsel/Tohu-Wa-Vohu/index.htm, accessed on
May 1st 2020

[2] http://www.clarity-media.co.uk/binary-puzzles.php], accessed on May
2nd 2020

[3] http://www.binarypuzzle.com/rules.php, accessed on May 2nd 2020

[4] http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-
2018/Algoritma-Brute-Force-(2016).pdf

[5] Rossi, Francesca; Beek, Peter Van; Walsh, Toby. “Handbook of
Constraint Programming”. Amsterdam: Elsevier. p. 14, August 2006.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2020

Andjani Kiranadewi/13518109

https://www.janko.at/Raetsel/Tohu-Wa-Vohu/index.htm
http://www.clarity-media.co.uk/binary-puzzles.php
http://www.binarypuzzle.com/rules.php
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/Algoritma-Brute-Force-(2016).pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/Algoritma-Brute-Force-(2016).pdf

