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Abstract—Bridge and Torch Problem is a popular Computer 

Science (CS) problem created by Richard Hovasse. It is a simple 

problem but very interesting and quite difficult to answer with 

brute force. The problem deals with some people crossing the 

dark and long bridge, the goal is to move all people from one side 

to another side with some constraints and minimum time. There 

are many way to solve this problem, but in this paper the author 

will show how to deal with this problem using Dynamic 

Programming. The idea of Dynamic Programming is to take the 

optimal solution for each step that become the subset of real 

solution. 
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I.  INTRODUCTION  

Nowadays, game is very popular among us. There are so 
many genres of the game, including logic game. We needs to 
think hard to solve this logic game or we can do a brute force 
attack to them, but it will be very exhausting. One of most 
popular logic game is Bridge and Torch Problem that asked by 
Richard Hovasse. This logic game seems simple but contains 
interesting puzzle in it and we can’t underestimate the logic 
behind it. 

Bridge and Torch problem start with a group of person 
where persons > 2 and they needs to move from one side of 
bridge to another side by crossing the long and dark bridge. 
Unfortunately, the bridge can only hold maximum of C person 
on it. They have a torch to light up the bridge but the batteries 
is running out in just a few minutes, and the light from it 
already reduced. From all people you know that the pace of 
walking is different from people-1 to people-k. If two or more 
people, where people < C travel from one side to another, 
because the torch’s light is not too bright, the travel from one 
side to another must follow the slower person’s pace of walk 
and since the bridge is long you can’t throw or roll the torch 
from another side back to the initial side. The only way to 
return the torch is send a person back from another side to 
initial side, bring the torch back by themselves. 

 

Figure 1 Bridge and Torch Problem 

As the problem said before, the torch is running out of 
batteries, so it will last for a few minutes. You must help these 
person crossing the bridge with the optimal time so all of them 
can cross the bridge before the torch is completely turned off. 

 Generally, this problem can be solved by model it into 
graph and we search the minimum cost for each vertex using 
BFS, DFS, UCS, etc. But in this paper the author wants to 
show us how to solve this problem by using the Dynamic 
Programming. 

II. BASIC THEORIES  

A. Dynamic Programming 

Dynamic Programming is a method for solving a complex 
problem by breaking it down into a collection of simpler 
subproblems in recursive manner, solving each those 
subproblems just once and storing their solutions using data 
structure. The next time the same subproblems occurs, instead 
of recomputing its solution, one simply looks up the previously 
computed solution. 
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Dynamic Programming algorithms are often used for 
optimization. A dynamic programming algorithm will examine 
the previously solved subproblems and will combine their 
solution to give the best solution for the given problem. In 
comparison, a greedy algorithm treats the solution as some 
sequence of steps and pick the locally optimal choice at each 
step.Using a greedy algorithm is less optimal because picking 
locally optimal choices may result in bad global solution. 

The Characteristics of Dynamic Programming : 

1. Problems can be divided into some subproblems, for each 
step we take one solution 

2. For each step there are some state that related to it. In 
general, state is all possibilities of input at that step 

3. Result from each step will transformed from the 
corresponding state to next state in the next step 

4. The cost from one step will increase steadily with the 
increasing step 

5. The cost in a step determined by the cost from previous 
step and the cost in that step 

6. Best Solution in one step is independent from the other 
solution 

7. Recursive manner, the best solution in stage k will give the 
best solution in stage k+1 

 
There are two approach of Dynamic Programming : Up-down 
and bottom-up. If x1,x2,x3,…xn  is state variable for step 
1,2,3,..., n then : 

1. Up-down : Dynamic program start at stage 1 to stage 2, 3 
and so on until stage n. The order are x1,x2,x3,…xn. 

2. Bottom-up : Dynamic program start at stage n and moving 
backward to stage n-1, n-2 and so on until stage 1. The 
order are xn, xn-1, …, x1  

Sample problem that can be solved using Dynamic 
Programming :  

1. Shortest Path 

2. Capital Budgeting 

3. Integer (1/0) Knapsack 

4. TSP 

III. BRIDGE AND TORCH USING DYNAMIC PROGRAMMING 

For the application of Dynamic programming in this 
problem, we create a simple Bridge and Torch Problem with 4 
people that must cross from southern bank to northern bank 
using the bridge and a torch (because its at night). The bridge is 
long and dark so you cannot pass the torch by throwing or roll 
it in the ground. The person, says A, B, C and D walk with 
different pace as follows : 

 

 

Person Time to travel to another side 

A 1 

B 3 

C 8  

D 10 

Table 1 Time to travel for each person 

Unfortunately the bridge was built in 1890 so it’s very old 
and maximum only 2 people that can cross the bridge at the 
same time. The torch will running out of batteries in just a few 
minutes, can you help them cross the bridge with the optimum 
time ? 

 There are 2 approach of Dynamic Programming for this 
problem : 

A. Dynamic programming using Process table 

  The conceptual framework we use to construct a 
mathematical model for the problem above is sequential 
decision processes. That is, we regard the problem under 
consideration as a sequential decision problem. We assume 
that there will be k crossings, j = 1, 2, …, k. 
  Crossing j < k consist of two parts : a group is moved 
from the southern bank to the northern banks and then one 
person returns the torch from the northern bank to the 
southern bank. The last crossing, j = k, consist only of the 
first part, as there is no need to return the torch. 

Decision variables : 
Let 
  Xj = group of persons moving from south to north in 
          the j-th crossing, j = 1, 2, …, k 
   
  Yj = person returning the torch to the southern bank 
                after the j-th crossing, j = 1, 2, …, k  

 State Variables : 
Let  
  Sj = group of person on the southern bank just before 
         the j-th crossing, j = 1, 2, …, k 

State transition : 
Given the above definitions, it follows that the dynamics of 
the state variables is governed by the following transition 
function : 
  Sj+1 = (Sj – Xj) U Yj, j = 1, 2, …, k 

Objective function : 
Let  
  T(Xj, Yj) = t(Xj) + t(Yj) 

Then by definition, T(Xj, Yj) is the time to complete a 
travel from southern bank to northern bank including the 
return of the torch to the souther bank, So it follows : 

  F(X,Y) = T(X1, Y1) + … + T(Xk-1, Yk-1) + t(Xk) 

The duration of the last crossing is equal to t(Xk) as there is 
no need to return the torch to the southern bank. 
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The person who returns the torch from northern bank to the 
southern bank must be the one with the fastest time. That is, 
given that group Sj is currently on the northern bank, person 
p will return the torch to the southern bank where t(p) = 
min {t(i) , where i in Sj }. Let p(Sj, Xj) denote this person, 
then : 

Sj+1 = Next(Sj, Xj) = (Sj – Xj) U p(Sj, Xj) 

Let D(Sj) denote the set of feasible values of Xj. It follows 
then that we can set: 

D(Sj) = {Sj} 
D(Sj) = {G : G is a subset of Sj such that 2 <= |G| <= C. 
              If |G| < C then t(G) < t(p) for all p in Sj}, |S| > C, 
       C is the capacity of the bridge. 

We now derive a dynamic programming functional 
equation for this problem. Solving this equation will yield 
an optimal policy for the problem. To accomplish this, 
define the state of the process to be the group of persons on 
the southern bank, namely G. 
Let : 

F(S) = minimal crossing time required to move group S 
from south to north 

With this in mind, let  

F(S,G) = minimal crossing time required to move group S 
from south to north, given that subgroup G is moved first 

Lemma 1 : 
F(S) = t(S), |S| <= 2 
F(S) = min {T(S,G) + F(Next(S,G)) 

Finally let D*(S) denote the set of optimal values of G 
associated with F(S) : 

D*(S) = {S}, 1 <= |S| <= 2 

D*(S) = {G* in D(S): T(S,g*) + F(Next(S,G*)) = min 

            {T(S,G) + F(Next(S,G)): G in D(S) }, |S| > 2 

Example  

Consider the example given at the beginning of this 
chapters: 

j A B C D 

t(j) 1 3 8 10 

Table 2 

Step 1  

S F(S) D*(S) 

{A} 1 {{A}} 

{B} 3 {{B}} 

{C} 8 {{C}} 

{D} 10 {{D}} 

{A,B} 3 {{A,B}} 

{A,C} 8 {{A,C}} 

{A,D} 10 {{A,D}} 

{B,C} 8 {{B,C}} 

{B,D} 10 {{B,D}} 

{C,D} 10 {{C,D}} 

Table 3 Result of Step 1 

Step 2 
We can now solve F(S) for all S such that |S| = 2 + 1 = 3. 
As follows : 
S = { {A,B,C}, {A,B,D}, {A,C,D}, {B,C,D} } 
 
For S = {A,B,C} we construct table as follows : 

G {A,B} {A,C} {B,C} 

p(S,X) A A B 

Next(S,G) {A,C} {A,B} {A,B} 

t(G) 3 8 8 

t(p(S,G)) 1 1 3 

F(Next(S,G)) 8 3 3 

F(S,G) 12 12 14 

Table 4 F({A,B,C}) 

It follows that F({A,B,C}) = min {12,12,14} = 12. There 
are two optimal decision for this subproblem, namely G = 
{A,B} and G = {A,C}, hence D*({A,B,C}) = 
{{A,B},{A,C}} 
 
Similiarly, we create the table for the rest of S 

For S = {A,B,D} we construct table as follows : 

G {A,B} {A,D} {B,D} 

p(S,X) A A B 

Next(S,G) {A,D} {A,B} {A,B} 

t(G) 3 10 10 

t(p(S,G)) 1 1 3 

F(Next(S,G)) 10 3 3 

F(S,G) 14 14 16 

Table 5 F({A,B,D}) 

It follows that F({A,B,D}) = min {14,14,16} = 14. There 
are two optimal decision for this subproblem, namely G = 
{A,B} and G = {A,D}, hence D*({A,B,D}) = 
{{A,B},{A,D}} 
 
For S = {A,C,D} we construct table as follows : 

G {A,C} {A,D} {C,D} 

p(S,X) A A B 

Next(S,G) {A,D} {A,C} {A,B} 

t(G) 8 10 10 

t(p(S,G)) 1 1 3 

F(Next(S,G)) 10 8 3 

F(S,G) 19 19 16 

Table 6 F({A,C,D}) 

It follows that F({A,C,D}) = min {19,19,16} = 16. There 
are only one optimal decision for this subproblem, namely 
G = {C,D}, hence D*({A,C,D}) = {{C,D}} 
 
For S = {B,C,D} we construct table as follows : 

G {B,C} {B,D} {C,D} 

p(S,X) A A A 

Next(S,G) {A,D} {A,C} {A,B} 

t(G) 8 10 10 

t(p(S,G)) 1 1 1 

F(Next(S,G)) 10 8 3 

F(S,G) 19 19 14 

Table 7 F({B,C,D}) 
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It follows that F({B,C,D}) = min {19,19,14} = 14. There 
are only one optimal decision for this subproblem, namely 
G = {C,D}, hence D*({B,C,D}) = {{C,D}} 
 
Finally we can construct the table for step 2 as follows : 

S F(S) D*(S) 

{A,B,C} 12 {{A,B}, {A,C}} 

{A,B,D} 14 {{A,B}, {A,D}} 

{A,C,D} 16 {{C,D}} 

{B,C,D} 14 {{C,D}} 

Table 8 Solution Table for step 2 

Step 3 
Now we can deal with the group whose cardinality is 4. 
There is only one such group, namely S = P = {A,B,C,D}. 
For this case, the set of feasible decisions is as follows : 

D({A,B,C,D}) = {{A,B}, {A,C}, {A,D}, {B,C}, {B,D},  
        {C,D}} 

The following table explains how the value of 
F({A,B,C,D}) is computed : 

G {A,B} {A,C} {A,D} {B,C} {B,D} {C,D} 

p(S,G) A A A B B C 
Next(S,G) {A,C,D} {A,B,D} {A,B,C} {A,B,D} {A,B,C} {A,B,C} 

t(G) 3 8 10 8 10 10 
t(p(S,G)) 1 1 1 3 3 8 
F(Next(S,G)) 16 14 12 14 12 12 
F(S,G) 20 23 23 25 25 30 

Table 9 Solution 

Thus, F(P) = F({A,B,C,D}) = 20 and the optimal decision 
is G = {A,B}, hence D*({A,B,C,D}) = {{A,B}}. This 
means that the next state of the process will be 
Next({A,B,C,D}, {A,B}) = {A,C,D}. The optimal decision 
at this state is G = {C,D}. This will change the satate of the 
process to Next({A,C,D}, {C,D}) = {A,B}. The optimal 
solution for this state is G’ = {A,B}. The state resulting 
from this decision will then be E = {}. It follows then that 
the optimal policy is p = {{A,B},{A},{C,D},{B},{A,B}} 
or : 
A and B move from south to north 
A come back to south 
C and D move from south to north 
B come back to south 
A and B move from south to north 
   

B. Dynamic programming Shortest Path reduction 

  We already know how to solve Bridge and torch 
problem using dynamic programming with decision table. 
There is one more way to solve this problem using 
Dynamic programming, its by reducing the problem into 
Shortest path problem using graph. 

Example  

With the same example as before, we can represent the 
problem using graph. Each node represent a step and value 
on the edge represent the time needed to do a travel and 
come back again to the south. Value on the node represent 
the person on the northern bank. So the graph is as follows : 

 

Figure 2 Bridge and Torch's graph 

Now our task is to find the minimum cost from node 1 to 
node 8 that represent the solution of Bridge and torch 
problem. 

Decision Variables : 
Let  

  Xk    = node that we must take at step k 
  Cs,xk = cost from s to Xk 

State variables : 
Let 

  s = set of node that we can take at step k + 1 

State Transition : 
Given the above definitions, it follows that the dynamics of 
the state variables is governed by the following transition 
function : 

  fk(Xk, s) = Cxk,s + fk-1 (Xk) 

Objective function : 
This recursive show the shortest path from s to X4 at step k: 

f1 (s) = Cxk,s 

fk (s) = min { Cxk,s + fk-1(Xk) }, k = 2,3,4 

So now we can start to solve this problem using Dynamic 
Programming : 

Step 1 
s f1(s) X1 

2 4 1 

3 9 1 

4 11 1 

Table 10 Basis for Shortest Path 

Because this is a basis, X1 is always the start node, not to 
mention node 1. 
 
Step 2 

s \ X2 2 3 4 f2(X2) X2 

5 13 13 - 13 2 or 3 

6 15 - 15 15 2 or 4 

7 17 20 20 17 2 

Table 11 Table for Step 2 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016 

 

As you can see there exist value “-“ it means there’s no 
edge connecting both node, you can also give it a value of 
infinity to ensure that edge never been selected. 
 
Step 3 

s \ X3 5 6 7 f3(X3) X3 

8 23 23 20 20 7 

Table 12 Table for Step 3 

  Now we must reconstructing the global solution using 
the table we get so far. We know that the minimal f3(X3) = 
20 and it implies the X3 must be node 7, the solution so far 
= {7-8}. Now we back to step 2, at s = 7 we get the value of 
f2 (7) = min { C2,7 + f1(X1) } = 17 and it implies the X2 must 
be node 2. The solution so far = {2 – 7 – 8}. Now we look 
at the step 1, step 1 is a basis so the X1 must be the start 
node, not to mention node 1. The solution = {1-2-7-8}. 

  Now we already know the node transition, our final 
task is represent that node into the step of travel for each 
person : 

From node 1 to node 2, A and B move to the north and then 
A come back to the south = 4 minute 

From node 2 to node 7, C and D move to the north and then 
B come back to the south = 13 minute 

From node 7 to node 8, A and B move to the north = 3 
minute. 

Total = 20 minute. 
 

IV. ANALYSIS AND IMPLEMENTATION 

Using Dynamic Programming to determine the step in 
Bridge and Torch problem always give an optimal solution. 
Because the subproblems of Bridge and Torch problem is 
always be the subset of the global solution, so solve the 
subprblems will solve the entire problems too. 

A. Analysis 

Before we do the implementation, we must know what 
exactly Dynamic Programming do to solve this problem. As 
we can see, Dynamic Programming is different with the 
greedy. Greedy algorithm only take decision based on the local 
optima, the difference between Dynamic Programming and 
Greedy might been seen on step 2 from the example before, as 
person C and D are both the slowest person on the group we 
can save so much time by traveling them together. But with 
greedy, we don’t ever considering the time passed, so we pair 
each C and D with A to reach local optima. This decision of 
greedy algorithm will waste the speed of person A as the 
fastest person on the group. 

This problem also can be solved using graph algorithm like 
DFS, BFS, UCS, and A-Star. But solving using these algorithm 
will need some space in your memory because they need to 
expand the tree and manipulating pointer. 

B. Implementation 

Speaking of algorithm, it’s such a waste if we know the 
concept but can’t implement it to the program, so here is the 
pseudocode of the program : 
 

 

And this is the following result of the program : 

Function TotalTime(person : array of integer, n : integer) -> 

integer    

variables 

 temp1,temp2 : integer 

algorithm 

 if (n < 3) then 

  -> person[n-1] 

 else if (n == 3) then 

  -> person[0] + person[1] + person[2] 

 else  

temp1 = person[n-1] + person[0] + person[n 

- 2] + person[0]; 

temp2 = person[1] + person[0] + person[n-

1] + person[1]; 

    

  if (temp1 < temp2)then 

   -> temp1 + TotalTime(person, n-2) 

  else if (temp2 < temp1)then 

   -> temp2 + TotalTime(person, n-2)  

  else 

   -> temp2 + TotalTime(person, n-2)  

end 

Program BridgeandTorch 

variables 

 n,member : integer 

 person : array of integer 

algortihm 

 write("Enter the number of person : ")          

 Read(n) 

 

 write("Enter the time each member needs to cross the 

bridge"); 

 

 for(member = 0; member < n ; member++) 

  person[member] = input 

 endfor 

 

 Sort(person) //sorting time needed to cross the bridge 

 write("The total time take to cross the bridge is: "); 

 write(Bridge.TotalTime(person, n)); 

     

end 
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Figure 3 Implementation of user code 
 

V. FUTURE IMPLEMENTATION 

As we can see, the program above still very simple and 

only determine the optimal time, for the future implementation 

maybe author will add some code that can show us the process 

and the solution from step 1 to step k in details. 

VI. CONCLUSION 

Dynamic Programming always give an optimal solution for 
the Bridge and Torch problem. There are 2 approaches of 
Dynamic programming for solving this problem : Solve by 
using table and solve by reducing it into Shortest path problem. 
Both algorithm will give the same and optimal result but the 
first approach still can be better in performance because it 
needs smaller amount of memories than the second approach 
that use graph.  
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