
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 Page 1 of 6

Aho – Corasick Algorithm in Pattern Matching

Elvan Owen and 135130821
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

113513082@std.stei.itb.ac.id

Abstract— This paper is going to talk about Pattern
Matching using Aho – Corasick algorithm which is quite
useful in some cases where other algorithm like Knuth
Morris Pratt or Boyer Moore or the other is just not fast
enough.

Index Terms— Automaton, Breadth – First Search, Suffix

Tree, Pattern Matching.

I. INTRODUCTION

What is Pattern Matching ?

In computer science, pattern matching is the act of

checking a given sequence of tokens (string) for the
presence of the constituents of some pattern. Different
from pattern recognition, the match commonly has to be
exact. The patterns generally have the form of either
sequences or tree structures. Uses of pattern matching
include outputting the locations (if exist) of a pattern
within a token sequence (string), to output some
component of the matched pattern, and to substitute the
matching pattern with some other token sequence (i.e.,
search and replace). Examples are given below.

Given :
 T: text that is a (long) string with n characters
 P: pattern that is a string with m characters that

will be matched with the text

Find or Locate the first index in text which matched the

pattern given.

Applications:

• Finding text in a text editor
• Web Search Engine
• Image Analysis
• BioInformatics

We have long used Pattern Matching Algorithm in our

lives without us realizing it. For example, when we have
read a book and then the next day when we refer back to
the book, we forget which page we last read, but we know
what we last read or in the case when we want to find a
file in our directory, what is done behind the scenes is that
the software or the Operating System has done the pattern
matching for us transparently. In the end, there are a lists
of pages or file names listed based on our search and we
get or find what we intend to find.

II. BIOGRAPHY

Here I found a bit of biography about Professor Aho,
but nothing about Corasick. Therefore, I just mention
professor Aho.

Alfred V. Aho is the Lawrence Gussman Professor in

the Department of Computer Science at Columbia
University. He served as Chair of the department from
1995 to 1997, and again in the spring of 2003.

Professor Aho has a B.A.Sc in Engineering Physics

from the University of Toronto and a Ph.D. in Electrical

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 Page 2 of 6

Engineering/Computer Science from Princeton
University.

Professor Aho won the Great Teacher Award for 2003

from the Society of Columbia Graduates. In 2014 he was
again recognized for teaching excellence by winning the
Distinguished Faculty Teaching Award from the
Columbia Engineering Alumni Association.

Professor Aho has received the IEEE John von

Neumann Medal and is a Member of the U.S. National
Academy of Engineering and of the American Academy
of Arts and Sciences. He is a Fellow of the Royal Society
of Canada. He received honorary doctorates from the
Universities of Helsinki and Waterloo, and is a Fellow of
the American Association for the Advancement of
Science, ACM, Bell Labs, and IEEE.

Professor Aho is well known for his many papers and

books on algorithms and data structures, programming
languages, compilers, and the foundations of computer
science. His book coauthors include John Hopcroft, Brian
Kernighan, Monica Lam, Ravi Sethi, Jeff Ullman, and
Peter Weinberger.

Professor Aho is the "A" in AWK, a widely used

pattern-matching language; "W" is Peter Weinberger and
"K" is Brian Kernighan. (Think of AWK as the
predecessor of perl.) He also wrote the initial versions of
the string pattern-matching utilities egrep and fgrep that
are a part of UNIX; fgrep was the first widely used
implementation of what is now called the Aho-Corasick
algorithm.

Professor Aho's current research interests include

programming languages, compilers, algorithms, software
engineering, and quantum computation.

Professor Aho has served as Chair of the Computer

Science and Engineering Section of the National
Academy of Engineering, as Chair of ACM's Special
Interest Group on Algorithms and Computability Theory,
and twice as Chair of the Advisory Committee for the
National Science Foundation's Computer and Information
Science and Engineering Directorate. He is currently the
co-chair of the contributed and review articles sections of
the Communications of the ACM.

Prior to his current position at Columbia, Professor

Aho was Vice President of the Computing Sciences
Research Center at Bell Labs, the lab that invented UNIX,
C and C++. He was previously a member of technical
staff, a department head, and the director of this center.
Professor Aho also served as General Manager of the
Information Sciences and Technologies Research
Laboratory at Bellcore (now Telcordia).

Professor Aho plays bridge, golf, and the violin in a string

quartet.
III. HOW IT WORKS

Aho – Corasick Algorithm idea is just as the other
normal Pattern Matching algorithm like KMP which takes
advantage of previous comparison to skip unnecessary
comparison. This algorithm uses a trie data structure.
Before getting into how the algorithm works. We’ll talk
about what trie is.

The term trie comes from the word “retrieval”. Trie is a

data structure where information retrieval is efficient.
Using trie, search complexities can be brought to optimal
limit (key length). If we use binary search tree to store
keys, a well balanced BST will still need time
proportional to (M * log N), where M is maximum string
length and N is total keys in tree. Nonetheless, using trie,
we can search the key in O(M) time. However, the
penalty is on trie storage requirements which is quite a
problem.

Each node in trie consists of multiple branches (all

corresponding alphabets in the domain). We need to
mark the last node of every key (by using a flag) to
distinguish the node from the other node which is not the
end of a key. A simple structure to represent nodes in
English alphabet is as following,

struct trie_node
{
 int value; /* Used to mark leaf nodes */
 trie_node_t *children[ALPHABET_SIZE];
};

Inserting a new key into trie is easy. Each character of

input key is inserted starting from the root as an
individual trie node. Note that a node's children is an
array of pointers to next level trie nodes. The key
character acts as an index for the children's array. If the
input key is new or an extension of existing key, we need
to construct non-existing nodes of the key, and mark it as
a leaf node. If the input key is a prefix of an already
existing key, we simply mark the last node as a leaf node.
The maximum key length determines the trie depth,
which is quite a problem if we have a very long key.

Searching operation for a key is very similar to an

insert operation, however we just compare each character
in the key one by one and move down. The search can
terminate due to end of string (marked as a leaf node) or
lack of key in trie (reach the end of the trie).

Insert and search operation costs O(m) where m is the

maximum length of a key, however the memory
requirements of trie is O(ALPHABET_SIZE * m * n)
where n is number of keys in trie. There are another
efficient representation of trie nodes (e.g. compressed trie,
ternary search tree, etc.) to minimize the memory
requirements of a trie.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 Page 3 of 6

 Trie Data Structure

After knowing trie, the second thing to know before we

dive into Aho – Corasick Algorithm is a suffix tree. What
does suffix means ?

If Text=t1t2...ti...tn is a string, then Si=titi+1...tn is the

suffix of Text that starts at position i and ends at position
n.

For example, Text = mississippi

S1 = mississippi
S2 = ississippi
S3 = ssissippi
S4 = sissippi
S5 = issippi
S6 = ssippi
S7 = sippi
S8 = ippi
S9 = ppi
S10 = pi
S11 = i
S12 = (empty)

A Suffix Tree for a given text is a compressed trie

where the keys are all the suffixes of the given text. A
suffix tree allows pretty fast implementations of many
important string operations. Let's understand Compressed
Trie with the following array of words.

{bear, bell, bid, bull, buy, sell, stock, stop}

Following is standard trie for the above input.

 Standard Trie

Following is the compressed trie. A Compressed Trie is

obtained from a standard trie by merging chains of single
nodes. The nodes of a compressed trie can be stored by
storing index ranges at the nodes in order to save spaces (
memory).

 Compressed Trie

One important feature of suffix trees are suffix

links. Suffix links are links from a current node to another
node which is a suffix of the current node. For example, if
there is a node v in the tree with a label cå, where c is a
character and å is a string (non-empty), then the suffix
link of v points to a node with label å. If å is empty, then
the suffix link of v is the root.

 Suffix Tree with Suffix Links

Now it comes to the real part, the Aho – Corasick

Algorithm. First of all, why would we want to use Aho –
Corasick instead of another Pattern Matching Algorithm
like KMP or Boyer Moore or Rabin Karp.

In the normal Pattern Matching algorithm, for any

pattern from a set P = {P1, . . . , Pk}, to find the
occurrence in a text T[1 . . . m], it can be solved in
time

O(|P1| + m + · · · + |Pk| + m) = O(n + km)

where n is the total length of all the pattern in P, by

applying the algorithm for k times.

Aho-Corasick algorithm (AC) is a classic solution to

this problem. It works in time O(n + m + z), where z is
number of pattern occurrences in T.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 Page 4 of 6

Steps in building Aho – Corasick Algorithm

Building Aho Corasick Automaton

There are 2 phases :

Phase I:

1. Construct the keyword tree for P
• for each p ∈ P added to the tree, set out(v) =

{p} for the node v labeled by p
2. complete the goto function for the root by setting

g(0, a) = 0
for each a ∈ Σ that doesn’t label an edge out of the
root

If the alphabet Σ is fixed, Phase I takes time O(n)

Result of Phase I

Phase II:

After building the automaton, we can then build the
longest-suffix-available-in-automaton links, which is the
failure function f .

The algorithm is given as follows,

 In this phase, what we have done is to do a Breadth-
First Search starting from root 0, and in every level we
create a link to the longest possible suffix existed in the
graph if there is one, or else link it back to the root. While
traversing the automaton, we append the values of the
linked-node to the current-node so that when we end in
the longer node for example “she” we could not only get
“she” but also “he”.

Using the Automaton to retrieve occurrence of Pattern
in Text

States : nodes of the keyword tree
Initial state : 0 (the root)

Actions are determined by three functions:

1. Goto function g(q, a) gives the state entered from
current state q by matching target char a
• if edge (q, v) is labeled by a, then g(q, a) = v
• g(0, a) = 0 for each a that does not label an

edge out of the root the automaton stays at
the initial state while scanning non-matching
characters

• Otherwise g(q, a) = ∅

2. Failure function f(q) for q <> 0 gives the state
entered at a mismatch
• f(q) is the node labeled by the longest proper

suffix w of L(q) such that w is a prefix of
some pattern

NB: f(q) is always defined, since L(0) = ε is a
prefix of any pattern

3. Output function out(q) gives the set of patterns
recognized when entering state q

 Aho – Corasick Automaton

Below is the algorithm for Aho – Corasick,

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 Page 5 of 6

Following steps by step from the algorithm :

1. We start from the root (node 0)
2. For each character in the Text, we move forward in

the automaton, however if we are not able to move
forward (due to unavailable character), then we
have to use the failure function f(q) and go to the
next node until we find a node in which it is
possible to move forward with current character
T[i].

3. We move forward after finding a node through
failure links.

4. Check if current node is a key node (node where it
contains patterns from P)

5. Return to step 1 until no more characters left in T

Complexity of Aho – Corasick Algorithm

Theorem

 Searching text T[1 . . m] with an Aho - Corasick
automaton has O(m + z) time complexity, where z is the
number of pattern occurrences .

Proof

 For every character in text T, the automaton performs 0
or more Fail function f transitions, followed by a Goto
function g .

Each goto either stays at the root, or increases the depth
of q by at most 1 ⇒ the depth of q increased ≤ m times .

Each fail moves q closer to the root ⇒ the total number
of fail transitions is ≤ m. So the maximum number of fail
moves is equal to the maximum depth of q .

The z occurrences can be outputted in z × O(1) = O(z)
time complexity .

So, the total Complexity ~ O(m+z) .

IV. APPLICATIONS

In bioinformatics, where there are known sets of DNAs
that need to be checked from a series of DNA.

Another one is that we can use this algorithm when we

have Wild Card * character in our pattern that we want to

search in the Text.

Let * be a wild card that matches any single character.

For example, ab**c* occurs at positions 2 and 7 of

123456789012
xabvccababca

 If the number of wild cards is bounded by a constant, the
patterns can be matched in linear time.

 Let P = {P1, . . , Pk} be the set of patterns which is
substrings separated by wild-cards, and let l1, . . , lk be
their end positions (index) in T

Preprocess:

1. Build automaton for all the patterns in P

2. Zero all occurrence counts :

 for i = 1 to |T| do C[i] = 0

Search:

1. Search text T using the automaton

2. When pattern Pj is found to end at index i of T,

increment C[i − lj + 1] by one

3. Any index i with C[i] = k is a start position of an

occurrence

Example :

V. CONCLUSION

 By using Aho – Corasick Algorithm, we can have a lot
of improvement in performance especially in time
complexity when we have a set of patterns P we need to
match to a text T.

VI. ACKNOWLEDGMENT

Terima kasih kepada Bu Ulfa dan Bapak Rinaldi yang
telah membimbing saya selama satu semester ini. Tanpa
mereka, saya tidak akan dapat menulis makalah ini.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 Page 6 of 6

REFERENCES

[1] http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf.
[2] http://www.geeksforgeeks.org/trie-insert-and-search/.
[3] http://linux.thai.net/~thep/datrie/trie1.gif.
[4] http://www.geeksforgeeks.org/pattern-searching-set-8-suffix-tree-

introduction/.
[5] http://www.cbcb.umd.edu/confcour/CMSC858W-

materials/lecture5.pdf.
[6] http://www1.cs.columbia.edu/~aho/bio.html
[7] http://open-your-innovation.com/2010/12/21/matching-algorithm-

and-process-fail-to-engage-solvers-into-problem-solving/
[8] http://i.stack.imgur.com/uh9O1.png

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 May 2015

Elvan Owen
13513082

