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Abstract—Pocket Cube is a sample member of the big 

rubic cube’s family. This cube is able to be solved by many 

ways. But now, the focus is BFS algorithm. This paper is 

about the Breadth-First Search (BFS) algorithm which is 

used for solving pocket cube. We will discuss about the 

ability of BFS to solve pocket cube using graph by 

enumerating the possibilitiy of movements till the solution is 

found. 

 

Index Terms—BFS, cube, solver.  

 

 

I.   INTRODUCTION 

Rubik's Cube is a 3-D combination puzzle invented in 

1974 by Hungarian sculptor and professor of architecture 

Ernő Rubik. Originally called the "Magic Cube. 

In a classic Rubik's Cube, each of the six faces is 

covered by nine stickers, each of one of six solid colours 

(traditionally white, red, blue, orange, green, and yellow, 

where white is opposite yellow, blue is opposite green, 

and orange is opposite red, and the red, white and blue are 

arranged in that order in a clockwise arrangement). An 

internal pivot mechanism enables each face to turn 

independently, thus mixing up the colours. For the puzzle 

to be solved, each face must be returned to consisting of 

one colour. Similar puzzles have now been produced with 

various numbers of sides, dimensions, and stickers. 

 

 

 
Fig. 1. standard rubik and other rubik’s family 

 

One sample member of the large rubik’s family is 

called pocket cube. It’s size is 2 x 2 x 2. It is the two 

layered version of a Rubiks Cube. It was invented by 

Rubik Erno before the ’80 and was patented on March 29, 

1983. At first sight it may seem to be simple and small but 

even this puzzle has more than 3,6 million possible 

permutations. 

 
Fig. 2. Pocket Cube 
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Configuration Graph: 

 vertex for each possible state 

 edge for each basic move (e.g., 90 degree turn) 

from one state to another 

 undirected: moves are reversible 

 

 

II.  SOME THEORIES 

A. Graph & Graph Traversal & it’s Algorithm 

1. Vertex,vertices 

A vertex of a graph is a connection point. A graph has a 

set of vertices, usually shown as V = {v1, v2, ..., vn}, V = 

{A, B, C}  or  V = {1, 2, ... N}. The number of vertices in 

a graph is |V|, but is sometimes written in equations as just 

V. A vertex may have no connections, one connection or 

many connections. A vertex may have any number of 

properties such as a name or a color. 

 

2. Edge 

An edge in a graph is a connection between vertices. 

Given vertices v1 and v2 in a graph, the edge between 

them may be written as  (v1,v2) or sometimes [v1,v2]. A 

graph has a set of edges usually denoted E, E = {(v1,v2), 

(v2,v3)}. The number of edges in a graph is |E| but is 

sometimes written in equations as just E. 

 

3. Graph 

A graph is a set of vertices and a set of edges.  G = (V, E). 

 

In computer science, graph traversal is the problem of 

visiting all the nodes in a graph in a particular manner, 

updating and/or checking their values along the way. Tree 

traversal is a special case of graph traversal. 

Unlike tree traversal, graph traversal may require that 

some nodes be visited more than once, since it is not 

necessarily known before transitioning to a node that it 

has already been explored. As graphs become more dense, 

this redundancy becomes more prevalent, causing 

computation time to increase, as graphs become more 

sparse, the opposite holds true. 

Thus, it is usually necessary to remember which nodes 

have already been explored by the algorithm, so that 

nodes are revisited as infrequently as possible (or in the 

worst case, to prevent the traversal from continuing 

indefinitely). This may be accomplished by associating 

each node of the graph with a "color" or "visitation" state 

during the traversal, which is then checked and updated as 

the algorithm visits each node. If the node has already 

been visited, it is ignored and the path is pursued no 

further; otherwise, the algorithm checks/updates the node 

and continues down its current path. 

Several special cases of graphs imply the visitation of 

other nodes in their structure, and thus do not require that 

visitation be explicitly recorded during the traversal. An 

important example of this is a tree, during a traversal of 

which it may be assumed that all "ancestor" nodes of the 

current node (and others depending on the algorithm) 

have already been visited. Both the depth-first and 

breadth-first graph searches are adaptations of tree-based 

algorithms, distinguished primarily by the lack of a 

structurally determined "root" node and the addition of a 

data structure to record the traversal's visitation state. 

Depth First Search or DFS is a method of traversing 

every element in a tree (or graph) by recursively visiting 

the first child, then second, etc, from the root node. The 

idea is we'll start at the root, then keep track of both 

children and go to the firrst child, treating it as a new root, 

and repeating the process until we reach a leaf. Then, we'll 

go back one step and go to the second child of the parent 

of the leaf and continue traversal. This process is 

recursive and continues until all nodes have been 

traversed. 

DFS traverses down the tree, then across. Alternately, 

we can traverse the tree by layer using Breadth First 

Search (BFS). To do this, create a list of nodes to traverse 

and for each node in the list, add its children onto the end 

of the list. It should be clear why this will traverse the tree 

by layers. 

In this case, we will learn more about BFS, and we will 

use it for solving pocket cube. 

 

B. BFS 

Breadth-First search (BFS) is a graph search algorithm 

that begins at the root node and explores all the 

neighboring nodes. Then for each of those nearest nodes, 

it explores their unexplored neighbor nodes, and so on, 

until it finds the goal.\ 

BFS is an uninformed search method that aims to 

expand and examine all nodes of a graph or combination 

of sequences by systematically searching through every 

solution. In other words, it exhaustively searches the 

entire graph or sequence without considering the goal 

until it finds it. It does not use a heuristic algorithm. 

From the standpoint of the algorithm, all child nodes 

obtained by expanding a node are added to a FIFO (i.e., 

First In, First Out) queue. In typical implementations, 

nodes that have not yet been examined for their neighbors 

are placed in some container (such as a queue or linked 

list) called "open" and then once examined are placed in 

the container "closed". 

If the element that is sought is found in this node, quit 

the search and return a result. Otherwise enqueue any 

successors (the direct child nodes) that have not yet been 

discovered. 

Below is the pseudocode: 

 
procedure BFS(Graph,source): 

 create a queue Q 

 enqueue source onto Q 

 mark source 

 while Q is not empty: 

dequeue an item from Q into v 

for each edge e incident 

on v in Graph: 

let w be the other 

end of e 

   if w is not marked: 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Tree_traversal
http://en.wikipedia.org/wiki/Tree_traversal
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    mark w 

    enqueue w onto 

Q 

 

About the space, since all of the nodes of a level must 

be saved until their child nodes in the next level have been 

generated, the space complexity is proportional to the 

number of nodes at the deepest level. Given a branching 

factor b and graph depth d the asymptotic space 

complexity is the number of nodes at the deepest level, 

O(bd). When the number of vertices and edges in the 

graph are known ahead of time, the space complexity can 

also be expressed as O( | E | + | V | ) where | E | is the 

cardinality of the set of edges (the number of edges), and | 

V | is the cardinality of the set of vertices. In the worst 

case the graph has a depth of 1 and all vertices must be 

stored. Since it is exponential in the depth of the graph, 

breadth-first search is often impractical for large problems 

on systems with bounded space. 

And then about the time complexity, since in the worst 

case breadth-first search has to consider all paths to all 

possible nodes the time complexity of breadth-first search 

is 1+b+b2+b3+…+bd which is O(bd). The time complexity 

can also be expressed as O( | E | + | V | ) since every 

vertex and every edge will be explored in the worst case. 

Breadth-first search is complete. This means that if 

there is a solution, breadth-first search will find it 

regardless of the kind of graph. However, if the graph is 

infinite and there is no solution breadth-first search will 

diverge. 

If the shallowest goal node is at some finite depth say d, 

breadth-first search will eventually find it after expanding 

all shallower nodes (provided that the branching factor b 

is finite). 

About tht optimality, for unit-step cost, breadth-first 

search is optimal. In general breadth-first search is not 

optimal since it always returns the result with the fewest 

edges between the start node and the goal node. If the 

graph is a weighted graph, and therefore has costs 

associated with each step, a goal next to the start does not 

have to be the cheapest goal available. This problem is 

solved by improving breadth-first search to uniform-cost 

search which considers the path costs. Nevertheless, if the 

graph is not weighted, and therefore all step costs are 

equal, breadth-first search will find the nearest and the 

best solution. 

It has been empirically observed (and analytically 

shown for random graphs) that incomplete breadth-first 

search is biased towards nodes of high degree. This makes 

a breadth-first search sample of a graph very difficult to 

interpret.  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
Fig. 3. Sample Ilustration for BFS 

 

C. Permutation 

Informally, a permutation describes an ordering of a 

set’s elements. Formally, an N-element permutation is an 
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one-to-one mapping of the set 1, 2 … N to itself. A 

permutation f can be represented by the list of N numbers 

f(1), f(2)…f(N). Here is an example of a 5-element 

permutation: 

Π = (3, 4, 1, 5, 2) 

As a suggestion, that in order to apply Π to a 5-element 

list, we should first output the third element, then the 

fourth element, then the first element, and so on. Given 

the list [a, b, c, d, e], we can apply Π to it (permute its 

elements by Π) and obtain [c, d, a, e, b]. Figure 4 

illustrates the process of applying a permutation. 

 

 

Fig. 4. The result of applying Π to [a, b, c, d, e]. Applying 

Π -1 to this result produces the original list. 

 

The inverse of a permutation “undoes” the effects of 

applying the permutation to a list of elements. For 

example, by applying Π -1 (the inverse of Π) to [c, d,  a,  e, 

b], we should obtain the original list [a, b, c, d, e]. 

Remember that we obtained [c, d,  a,  e, b] by applying Π -

1 to [a, b, c, d, e]. A permutation’s inverse can be 

computed by observing that Π -1 (Π (i)) = i for 1 ≤ i ≤ N. 

Intuitively, if Π moves the third element in the input to the 

first position in the output, Π -1 must take the first element 

in that output (which becomes its input) and move it to the 

third position in its own output, because Π -1’s output 

must match Π’s input 

 

 

III.   ANALYSIS 

We will try to solve Rubik’s Cube problem by enumerat 

all possible configurations of the Rubik’s cube  as vertices 

in a graph, and uses edges to represent valid twists of the 

cube. Given the node of the starting state, we will use 

Breadth-First Seach (BFS) to find a sequence of edges 

(cube twists) that will “solve” the cube, by getting into a 

desirable configuration. Both configurations and moves 

are represented using permutations. 

 

A. Cubic State 

A plastic 2x2 Rubik’s cube is made out of 8 plastic 

“cubelets”. Each plastic cubelet has 3 visible faces that are 

colored, and 3 faces that are always face the center of the 

big cube, so we never see them, and we ignore them from 

now on. Therefore, a plastic 2x2 Rubik’s cube has 24 

(8x3) colored plastic faces belonging to the 8 cubelets. 

The code represents plastic faces using constants named 

as follows: yob is the yellow face of the cubelet whose 

visible faces are yellow, orange, and blue. The code also 

numbers the 24 plastic faces from 0 to 23, and these 

numbers are the values of the constants named according 

to the convention above. One way of representing the 

Rubik’s cube configurations is to reflect the process of 

building a physical cube by pasting the 24 colored plastic 

faces on a wireframe of a cube. The left side of Figure 6 

shows a wireframe 2x2 Rubik’s cube. The cube’s 

wireframe has 8 cubeletes wireframes, each of which has 

3 visible hollow faces where we can paste a plastic face. 

We refer to the wireframe faces as follows: flu is the front 

face of the front-left-upper cubelet in the wireframe. 

Wireframe faces are also associated numbers from 0 to 

23. A cube configuration describes how plastic faces are 

pasted onto the wireframe cube, so it maps the 24 plastic 

faces 0-23 to the 24 wireframe faces 0-23. This means that 

a configuration is a permutation, which can be stored in a 

24-element array. 

  



Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014 

 

 
Fig. 5. The wireframe Rubik’s 2x2 cube is the first image, 

and the plastic cube is at it’s below. The plastic cube is 

made out of plastic faces, and the wireframe cube has 

positions where the plastic faces can be pasted. 

 

 
Fig. 6. A configuration of the Rubik’s cube is represented 

as a 24-element array, mapping the 24 plastic faces to the 

24 wireframe faces. The configuration above has the yob 

plastic cubelet mapped to the fru wireframe cubelet, like 

in Figure 5. 

 

B. Graph Representation 

Given the representation above, there are 24! Possible 

configurations. Some configurations are outright 

impossible. For example, mapping two faces of the same 

plastic cubelet to faces of different wireframe cubelets 

will clearly result in an impossible configurations, because 

we’re not allowed to break apart the cube in order to solve 

it. A graph with 24! configurations won’t fit into a normal 

machine’s RAM, so we can’t use the straight-forward 

approach of generating the graph first, and then running 

Breadth-First Search (BFS) on it. Instead, we will code up 

an implicit representation of the graph, which will allow 

us to generate the vertices and edges that the BFS visits, 

on-the-fly, as we run BFS. In order to run BFS, we need 

the vertices corresponding to our stating state and to the 

winning state, and an implementation of neighbors(V), 

which returns all the neighbors of a given vertex v. 

 

C. Cube Twists 

In order to implement neighbors(V), we need to analyze 

the configuration changes caused by cube twists, and code 

them up inside the neighbors(V) method. Twisting a cube 

changes the cube’s configuration, by changing the 

position of the plastic faces onto the wireframe. A twist 

moves the cube’s wireframe so, for example, rotating the 

front face clockwise will always move the plastic face that 

was pasted onto flu (the front face of the frontleft-upper 

cubelet) to rfu (the right face of the front-right-upper 

cubelet). Figure below illustrates the effects of rotating the 

front face clockwise. 

 
Fig. 7. The configuration changes and permutation 

representing a clockwise twist of the cube’s front face. 

 

Due to the property above, we can represent cube twists 

as permutations. Applying a twist’s permutation to the list 

describing a configuration permutation produces the list 

describing the new configuration permutation. So we can 

implement neighbors(V) by hard-coding the permutations 

corresponding to cube twists, and applying them to the 

configuration corresponding to v. The inverse of a twist’s 

permutation represents the move that would undo the 

twist. 

V.   CONCLUSION 

BFS algorithm is widely used to solve many kind of 

problems and one of them is to solve pocket cube. The 

BFS solution for solving pocket cube gives optimum 

solution. But it is difficult to use it in daily life, it is of 

course easier to use formula that’s been given. But, by 

using the formula, we won’t know where the formula 

comes from, while by using BFS, we could understand the 

process. In this case, BFS gives a “not so small”solution 

because all posible states should be saved and can cause 

out of memory.  
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