
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

The Use of BFS to Solve Pocket Cube

Dyah Rahmawati 13511012

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13511012@std.stei.itb.ac.id

Abstract—Pocket Cube is a sample member of the big

rubic cube’s family. This cube is able to be solved by many

ways. But now, the focus is BFS algorithm. This paper is

about the Breadth-First Search (BFS) algorithm which is

used for solving pocket cube. We will discuss about the

ability of BFS to solve pocket cube using graph by

enumerating the possibilitiy of movements till the solution is

found.

Index Terms—BFS, cube, solver.

I. INTRODUCTION

Rubik's Cube is a 3-D combination puzzle invented in

1974 by Hungarian sculptor and professor of architecture

Ernő Rubik. Originally called the "Magic Cube.

In a classic Rubik's Cube, each of the six faces is

covered by nine stickers, each of one of six solid colours

(traditionally white, red, blue, orange, green, and yellow,

where white is opposite yellow, blue is opposite green,

and orange is opposite red, and the red, white and blue are

arranged in that order in a clockwise arrangement). An

internal pivot mechanism enables each face to turn

independently, thus mixing up the colours. For the puzzle

to be solved, each face must be returned to consisting of

one colour. Similar puzzles have now been produced with

various numbers of sides, dimensions, and stickers.

Fig. 1. standard rubik and other rubik’s family

One sample member of the large rubik’s family is

called pocket cube. It’s size is 2 x 2 x 2. It is the two

layered version of a Rubiks Cube. It was invented by

Rubik Erno before the ’80 and was patented on March 29,

1983. At first sight it may seem to be simple and small but

even this puzzle has more than 3,6 million possible

permutations.

Fig. 2. Pocket Cube

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Configuration Graph:

 vertex for each possible state

 edge for each basic move (e.g., 90 degree turn)

from one state to another

 undirected: moves are reversible

II. SOME THEORIES

A. Graph & Graph Traversal & it’s Algorithm

1. Vertex,vertices

A vertex of a graph is a connection point. A graph has a

set of vertices, usually shown as V = {v1, v2, ..., vn}, V =

{A, B, C} or V = {1, 2, ... N}. The number of vertices in

a graph is |V|, but is sometimes written in equations as just

V. A vertex may have no connections, one connection or

many connections. A vertex may have any number of

properties such as a name or a color.

2. Edge

An edge in a graph is a connection between vertices.

Given vertices v1 and v2 in a graph, the edge between

them may be written as (v1,v2) or sometimes [v1,v2]. A

graph has a set of edges usually denoted E, E = {(v1,v2),

(v2,v3)}. The number of edges in a graph is |E| but is

sometimes written in equations as just E.

3. Graph

A graph is a set of vertices and a set of edges. G = (V, E).

In computer science, graph traversal is the problem of

visiting all the nodes in a graph in a particular manner,

updating and/or checking their values along the way. Tree

traversal is a special case of graph traversal.

Unlike tree traversal, graph traversal may require that

some nodes be visited more than once, since it is not

necessarily known before transitioning to a node that it

has already been explored. As graphs become more dense,

this redundancy becomes more prevalent, causing

computation time to increase, as graphs become more

sparse, the opposite holds true.

Thus, it is usually necessary to remember which nodes

have already been explored by the algorithm, so that

nodes are revisited as infrequently as possible (or in the

worst case, to prevent the traversal from continuing

indefinitely). This may be accomplished by associating

each node of the graph with a "color" or "visitation" state

during the traversal, which is then checked and updated as

the algorithm visits each node. If the node has already

been visited, it is ignored and the path is pursued no

further; otherwise, the algorithm checks/updates the node

and continues down its current path.

Several special cases of graphs imply the visitation of

other nodes in their structure, and thus do not require that

visitation be explicitly recorded during the traversal. An

important example of this is a tree, during a traversal of

which it may be assumed that all "ancestor" nodes of the

current node (and others depending on the algorithm)

have already been visited. Both the depth-first and

breadth-first graph searches are adaptations of tree-based

algorithms, distinguished primarily by the lack of a

structurally determined "root" node and the addition of a

data structure to record the traversal's visitation state.

Depth First Search or DFS is a method of traversing

every element in a tree (or graph) by recursively visiting

the first child, then second, etc, from the root node. The

idea is we'll start at the root, then keep track of both

children and go to the firrst child, treating it as a new root,

and repeating the process until we reach a leaf. Then, we'll

go back one step and go to the second child of the parent

of the leaf and continue traversal. This process is

recursive and continues until all nodes have been

traversed.

DFS traverses down the tree, then across. Alternately,

we can traverse the tree by layer using Breadth First

Search (BFS). To do this, create a list of nodes to traverse

and for each node in the list, add its children onto the end

of the list. It should be clear why this will traverse the tree

by layers.

In this case, we will learn more about BFS, and we will

use it for solving pocket cube.

B. BFS

Breadth-First search (BFS) is a graph search algorithm

that begins at the root node and explores all the

neighboring nodes. Then for each of those nearest nodes,

it explores their unexplored neighbor nodes, and so on,

until it finds the goal.\

BFS is an uninformed search method that aims to

expand and examine all nodes of a graph or combination

of sequences by systematically searching through every

solution. In other words, it exhaustively searches the

entire graph or sequence without considering the goal

until it finds it. It does not use a heuristic algorithm.

From the standpoint of the algorithm, all child nodes

obtained by expanding a node are added to a FIFO (i.e.,

First In, First Out) queue. In typical implementations,

nodes that have not yet been examined for their neighbors

are placed in some container (such as a queue or linked

list) called "open" and then once examined are placed in

the container "closed".

If the element that is sought is found in this node, quit

the search and return a result. Otherwise enqueue any

successors (the direct child nodes) that have not yet been

discovered.

Below is the pseudocode:

procedure BFS(Graph,source):

 create a queue Q

 enqueue source onto Q

 mark source

 while Q is not empty:

dequeue an item from Q into v

for each edge e incident

on v in Graph:

let w be the other

end of e

 if w is not marked:

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Tree_traversal
http://en.wikipedia.org/wiki/Tree_traversal

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

 mark w

 enqueue w onto

Q

About the space, since all of the nodes of a level must

be saved until their child nodes in the next level have been

generated, the space complexity is proportional to the

number of nodes at the deepest level. Given a branching

factor b and graph depth d the asymptotic space

complexity is the number of nodes at the deepest level,

O(bd). When the number of vertices and edges in the

graph are known ahead of time, the space complexity can

also be expressed as O(| E | + | V |) where | E | is the

cardinality of the set of edges (the number of edges), and |

V | is the cardinality of the set of vertices. In the worst

case the graph has a depth of 1 and all vertices must be

stored. Since it is exponential in the depth of the graph,

breadth-first search is often impractical for large problems

on systems with bounded space.

And then about the time complexity, since in the worst

case breadth-first search has to consider all paths to all

possible nodes the time complexity of breadth-first search

is 1+b+b2+b3+…+bd which is O(bd). The time complexity

can also be expressed as O(| E | + | V |) since every

vertex and every edge will be explored in the worst case.

Breadth-first search is complete. This means that if

there is a solution, breadth-first search will find it

regardless of the kind of graph. However, if the graph is

infinite and there is no solution breadth-first search will

diverge.

If the shallowest goal node is at some finite depth say d,

breadth-first search will eventually find it after expanding

all shallower nodes (provided that the branching factor b

is finite).

About tht optimality, for unit-step cost, breadth-first

search is optimal. In general breadth-first search is not

optimal since it always returns the result with the fewest

edges between the start node and the goal node. If the

graph is a weighted graph, and therefore has costs

associated with each step, a goal next to the start does not

have to be the cheapest goal available. This problem is

solved by improving breadth-first search to uniform-cost

search which considers the path costs. Nevertheless, if the

graph is not weighted, and therefore all step costs are

equal, breadth-first search will find the nearest and the

best solution.

It has been empirically observed (and analytically

shown for random graphs) that incomplete breadth-first

search is biased towards nodes of high degree. This makes

a breadth-first search sample of a graph very difficult to

interpret.

Fig. 3. Sample Ilustration for BFS

C. Permutation

Informally, a permutation describes an ordering of a

set’s elements. Formally, an N-element permutation is an

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

one-to-one mapping of the set 1, 2 … N to itself. A

permutation f can be represented by the list of N numbers

f(1), f(2)…f(N). Here is an example of a 5-element

permutation:

Π = (3, 4, 1, 5, 2)

As a suggestion, that in order to apply Π to a 5-element

list, we should first output the third element, then the

fourth element, then the first element, and so on. Given

the list [a, b, c, d, e], we can apply Π to it (permute its

elements by Π) and obtain [c, d, a, e, b]. Figure 4

illustrates the process of applying a permutation.

Fig. 4. The result of applying Π to [a, b, c, d, e]. Applying

Π -1 to this result produces the original list.

The inverse of a permutation “undoes” the effects of

applying the permutation to a list of elements. For

example, by applying Π -1 (the inverse of Π) to [c, d, a, e,

b], we should obtain the original list [a, b, c, d, e].

Remember that we obtained [c, d, a, e, b] by applying Π -

1 to [a, b, c, d, e]. A permutation’s inverse can be

computed by observing that Π -1 (Π (i)) = i for 1 ≤ i ≤ N.

Intuitively, if Π moves the third element in the input to the

first position in the output, Π -1 must take the first element

in that output (which becomes its input) and move it to the

third position in its own output, because Π -1’s output

must match Π’s input

III. ANALYSIS

We will try to solve Rubik’s Cube problem by enumerat

all possible configurations of the Rubik’s cube as vertices

in a graph, and uses edges to represent valid twists of the

cube. Given the node of the starting state, we will use

Breadth-First Seach (BFS) to find a sequence of edges

(cube twists) that will “solve” the cube, by getting into a

desirable configuration. Both configurations and moves

are represented using permutations.

A. Cubic State

A plastic 2x2 Rubik’s cube is made out of 8 plastic

“cubelets”. Each plastic cubelet has 3 visible faces that are

colored, and 3 faces that are always face the center of the

big cube, so we never see them, and we ignore them from

now on. Therefore, a plastic 2x2 Rubik’s cube has 24

(8x3) colored plastic faces belonging to the 8 cubelets.

The code represents plastic faces using constants named

as follows: yob is the yellow face of the cubelet whose

visible faces are yellow, orange, and blue. The code also

numbers the 24 plastic faces from 0 to 23, and these

numbers are the values of the constants named according

to the convention above. One way of representing the

Rubik’s cube configurations is to reflect the process of

building a physical cube by pasting the 24 colored plastic

faces on a wireframe of a cube. The left side of Figure 6

shows a wireframe 2x2 Rubik’s cube. The cube’s

wireframe has 8 cubeletes wireframes, each of which has

3 visible hollow faces where we can paste a plastic face.

We refer to the wireframe faces as follows: flu is the front

face of the front-left-upper cubelet in the wireframe.

Wireframe faces are also associated numbers from 0 to

23. A cube configuration describes how plastic faces are

pasted onto the wireframe cube, so it maps the 24 plastic

faces 0-23 to the 24 wireframe faces 0-23. This means that

a configuration is a permutation, which can be stored in a

24-element array.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Fig. 5. The wireframe Rubik’s 2x2 cube is the first image,

and the plastic cube is at it’s below. The plastic cube is

made out of plastic faces, and the wireframe cube has

positions where the plastic faces can be pasted.

Fig. 6. A configuration of the Rubik’s cube is represented

as a 24-element array, mapping the 24 plastic faces to the

24 wireframe faces. The configuration above has the yob

plastic cubelet mapped to the fru wireframe cubelet, like

in Figure 5.

B. Graph Representation

Given the representation above, there are 24! Possible

configurations. Some configurations are outright

impossible. For example, mapping two faces of the same

plastic cubelet to faces of different wireframe cubelets

will clearly result in an impossible configurations, because

we’re not allowed to break apart the cube in order to solve

it. A graph with 24! configurations won’t fit into a normal

machine’s RAM, so we can’t use the straight-forward

approach of generating the graph first, and then running

Breadth-First Search (BFS) on it. Instead, we will code up

an implicit representation of the graph, which will allow

us to generate the vertices and edges that the BFS visits,

on-the-fly, as we run BFS. In order to run BFS, we need

the vertices corresponding to our stating state and to the

winning state, and an implementation of neighbors(V),

which returns all the neighbors of a given vertex v.

C. Cube Twists

In order to implement neighbors(V), we need to analyze

the configuration changes caused by cube twists, and code

them up inside the neighbors(V) method. Twisting a cube

changes the cube’s configuration, by changing the

position of the plastic faces onto the wireframe. A twist

moves the cube’s wireframe so, for example, rotating the

front face clockwise will always move the plastic face that

was pasted onto flu (the front face of the frontleft-upper

cubelet) to rfu (the right face of the front-right-upper

cubelet). Figure below illustrates the effects of rotating the

front face clockwise.

Fig. 7. The configuration changes and permutation

representing a clockwise twist of the cube’s front face.

Due to the property above, we can represent cube twists

as permutations. Applying a twist’s permutation to the list

describing a configuration permutation produces the list

describing the new configuration permutation. So we can

implement neighbors(V) by hard-coding the permutations

corresponding to cube twists, and applying them to the

configuration corresponding to v. The inverse of a twist’s

permutation represents the move that would undo the

twist.

V. CONCLUSION

BFS algorithm is widely used to solve many kind of

problems and one of them is to solve pocket cube. The

BFS solution for solving pocket cube gives optimum

solution. But it is difficult to use it in daily life, it is of

course easier to use formula that’s been given. But, by

using the formula, we won’t know where the formula

comes from, while by using BFS, we could understand the

process. In this case, BFS gives a “not so small”solution

because all posible states should be saved and can cause

out of memory.

REFERENCES

[1] http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Breadth-

first_search.html

accessed on 19-12-2013 at 9:18 pm

[2] http://www.cse.ohiostate.edu/~gurari/course/cis680/cis680Ch14.ht

ml#QQ1-46-92

accessed on 19-12-2013 at 9:25 pm

[3] http://courses.csail.mit.edu/6.006/spring11/lectures/lec11.pdf

accessed on 20-12-2013 at 10:44 am

[4] http://s395.photobucket.com/user/tkoerting/media/rubikscubes.jpg

.html

accessed on 20-12-2013 at 10:48 am

[5] http://ruwix.com/twisty-puzzles/2x2x2-rubiks-cube-pocket/

accessed on 20-12-2013 at 11:11 am

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Breadth-first_search.html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Breadth-first_search.html
http://www.csee.umbc.edu/~squire/reference/graph_def.shtml%20accessed%20on%2018-12-2012
http://www.cse.ohiostate.edu/~gurari/course/cis680/cis680Ch14.html#QQ1-46-92
http://www.cse.ohiostate.edu/~gurari/course/cis680/cis680Ch14.html#QQ1-46-92
http://www.csee.umbc.edu/~squire/reference/graph_def.shtml%20accessed%20on%2018-12-2012
http://courses.csail.mit.edu/6.006/spring11/lectures/lec11.pdf
http://www.csee.umbc.edu/~squire/reference/graph_def.shtml%20accessed%20on%2018-12-2012
http://s395.photobucket.com/user/tkoerting/media/rubikscubes.jpg.html
http://s395.photobucket.com/user/tkoerting/media/rubikscubes.jpg.html
http://www.csee.umbc.edu/~squire/reference/graph_def.shtml%20accessed%20on%2018-12-2012
http://ruwix.com/twisty-puzzles/2x2x2-rubiks-cube-pocket/
http://www.csee.umbc.edu/~squire/reference/graph_def.shtml%20accessed%20on%2018-12-2012

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Desember 2013

Dyah Rahmawati

13511012

