
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

A String Matching Approach to Identifying and Finding

Modern Pop Music Based on Its Melody

Hafizh Adi Prasetya - 13511092

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13511092@std.stei.itb.ac.id

Abstract - In recent years, the global music industry has

undergone a massive and rapid development. The

appearance of new genres, such as dubstep and country-

house, also new marketing gimmicks such as idol groups

have supercharged music producers into creating lots of new,

revolutionary sounds. Although this seems like a great thing

to the industry, it also creates a troubling phenomenon

where a song's lifespan is reduced to mere weeks. It is often

the case where a particular song becomes a hit but was

quickly forgotten in one or two weeks, except for parts of its

melody. We see this as a motivation to develop a practical

way for identifying a music only based on parts of its melody.

One way to solve this problem is by using a string matching

approach. By representing melody inputs as strings, we can

use it as a pattern that could be matched to a text. The text to

match is none other than a database of songs that exists. This

paper tries to prove its feasibility by providing a simple

algorithm design to identify a song using the string matching

approach.

Index Terms- Music, Song, Identification, Pattern

Matching, String.

I. INTRODUCTION

The advent of digital music in the early 2000s has

brought some dramatic changes to the music industry.

Physical sales dropped significantly because the illegal

distribution of music via internet. A lot of digital

processing tools were developed, enabling people to

create music in their rooms with nothing more than a

laptop. The music trend shifts from the traditional music

played by a band, into those with digital and synthetic

sound created in advanced application. In recent years, the

music industry is trying its hardest to adapt with the

digital technology, shifting its market into the digital

sector. The biggest music market in the world right now is

Apple Inc.'s iTunes.

Even though the music industry is trying to cope with

the loss caused by digital distribution, the number of

music produced is actually increasing. This leads into a

faster, harsher mainstream scene for the songs produced.

Songs rises and falls down the charts very quickly giving

them the exposure time of only weeks, or even days. This

situation demands a quick and effective method to archive

and find and identify songs. One main aspect of a song

that's already used for archiving is the lyrics. It's common

practice to find a song by searching it's lyrics in Google or

other web search engine.

Nevertheless, it's still a good idea to find another way

to finding song, one that's simpler than typing the words

of the lyrics. One of such way is finding by pitch. Imagine

humming to a song and then a program quickly identifies

it. With the advancement of technology in handheld

gadgets and better hardware, this approach would be very

viable and effective for users. However, in the

implementation of such app, we need a quick and

effective approach to matching the pitch input of the user

and the ones in the database.

When it comes to matching items, string matching is

one of the oldest and most practical approaches. If two

items can be represented as strings, then we can use a

string matching algorithm to check for correctness. In this

this case, if we can represent a user pitch input and the

database of songs as strings, we can use a typical string

matching algorithm like Boyer-Moore or Knuth-Morris-

Pratt to find the input in the database. This paper tries to

explore such idea, proposing a scheme to represent the

input pitch and the database as strings, and using a string

matching algorithm to find songs quickly and effectively

using the pitch string.

II. FUNDAMENTAL THEORIES

A. Pattern Matching

Pattern matching is the act of checking whether or not

a given sequence (pattern) is the same with another

sequence given. Usually the sequence that is matched

with the pattern is bigger in size so that the problem

becomes finding the pattern in the bigger sequence (text).

It is one of the most popular approaches in the problem

of object identification or search.

A pattern matching approach could be further broken

down into different sub-approaches. One sub-approach

that we will use in this paper in particular is the string

matching approach. A string matching approach reduces

the pattern and the text into strings, and then uses a string-

matching algorithm to find the pattern string inside the

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

text string. In theory, as long as anything can be

represented in the form of strings, the string matching

algorithm can be used.

There are a lot of string matching algorithms, each with

its own strength. However, this paper does not cover the

comparison between string matching algorithms; it only

tries to prove the feasibility of the string matching

approach. The most primitive algorithm, the brute force

algorithm, will be used to illustrate that it is actually

possible to use string matching.

A.1. Brute Force Algorithm

It is possible to find pattern in text using a brute force

approach, that is checking all the possible places for a

pattern to appear until it was found or the end of the text

is reached. This method, however, shares the drawback of

all brute force oriented approach, which is a long response

time. Nevertheless, it gives a result and a solution to the

problem, which is sufficient to prove the point.

The brute force algorithm for string matching is very

simple and is best illustrated using an example:

An example of string matching with brute force

In the picture above, we try to find the pattern “ext” in

the text “test text”. The brute force algorithm first place

the pattern in the beginning of the text and try to match

each corresponding character in the pattern and the text.

The red letters represent a mismatch, and the green

represents a match. If a mismatch happens, the algorithm

moves the pattern one ahead, and repeats the matching

process to the start of the pattern. In pseudo-code

notation:

function BruteStringMatching(Pattern P, Text T):

// The position of the matching in P and T

i = 0

j = 0

WHILE pattern not found AND i < Size(T) –

Size(P):

 // Try to match

 IF (T[i] == P[j]) // Match
 i++

 j++

 IF (j == Size(P)) // Pattern

found

 RETURN true

 ELSE

 i = i – j // return

 j = 0

// While ended, pattern not found

RETURN false

B. Music Structure

Music, especially modern popular music all have

certain structure that we can use to increase the efficiency

of our algorithm design. The musical structure described

here would be the structure of a typical modern pop song,

keeping in mind that it‟s those kinds of songs that are

mostly found in today‟s song library. The study of a using

this approach for other genres of music such as classical

music would not be discussed here.

B.1. Popular Song Structure

In popular music, songs are usually divided into

sections, typically chorus, verse, bridge, and (but not

necessarily) intro/outro. These sections are typically

repeated throughout the song, only differing in lyrics in

case of a lyrical section. Here, a short explanation of each

section would be provided.

Intro is a unique section that usually comes in the

beginning of the song. Although more recent songs have

either a chorus or a verse in the beginning, intro is still

unique enough to be considered a section of its own. In

songs with lyrics, intro are usually (although not

exclusively) instrumental and have its own melody. On the

other hand, an outro is similar to an intro, but it comes at

the end of the song.

Chorus is essentially the highlight of the song. It is a

part that is specifically designed with greater intensity,

musically and emotionally. It usually sends the main idea

of the song and often repeated more than one time, with

similar lyrics.

Verse is the main part of the song. It usually can be

identified as the part that appears often in the song, and is

on a middle level of intensity. In contrary with the chorus,

a verse usually sets up the narrative with different lyrics in

different verses.

Bridge as the name implies, is the part between sections

of the song. In typical modern pop songs, a bridge usually

appears once, after the second chorus leading to the final

chorus. Bridges often have unique melodies, with intensity

building up so that the final chorus would have the peak

intensity in the song.

III. ALGORITHM DESIGN

 When using the pattern matching approach to

solve a certain problem, three fundamental things must

first be defined. The pattern that we want to search, the

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

text in which we search the pattern and the algorithm used

in matching the pattern to the text. In this particular case,

the pattern would be the pitch data inputted by the user,

the text would be all the song data in the database, and the

algorithm would be a basic pattern matching algorithm

modified to tackle some of the domain-specific issue that

we will talk about later on.

A. The Pattern

There are lots of ways a user can input a sequence of

pitch to be matched. One could input it manually by

writing it as a string with a predefined protocol, plug a

guitar and play it to the tune of the song, using a specific

tool to create a certain music format, or just simply sing

the song, record it, and put it in a voice processing tool.

In order to simplify the problem, this paper generalizes

those above into two types of user input: an accurate

input, for example using an established format such as

MIDI, and an inaccurate input, for example singing to a

recorder and converting the sound waves it to a standard

notation using a pitch-detection algorithm. We will briefly

take a look at those two types of input and how to convert

them into strings.

A.1. MIDI

MIDI stands for Musical Instrument Digital Interface,

founded about at 1982, pioneered by leading electronic

musical instrument manufacturer like Roland, Yamaha,

Korg, and Kawai. It's a technical standard that describes a

protocol, digital interface, and connector, designed to

allow the communication and transfer of data between

electronic music instruments and the computer. MIDI also

allows recording of music data into a hardware/software

called sequencer and editing it later on.

The data carried by MIDI are common music data, such

as note events, timing events, pitch bends, tempo, etc.

These data, especially the pitch and note events are

exactly the data we need as a pattern. A typical scenario

would be hooking an electronic instrument into the

computer, playing the music on it, passing it to the midi

sequencer, and then converting it as a string to be used in

the string matching algorithm.

A typical MIDI input translation scheme

The reason why MIDI is very compatible with our

string matching approach is because the separation of data

in MIDI format makes it very easy for programmers to

convert it into regular text. In fact, a lot of MIDI to ASCII

programs are readily available on the net, some

 -

). Also, as long as the user

gets the note right, MIDI format would deliver a precise

text, without any tempo or pitch deviation.

BA 2 CR 0 TR 1 CH 1 NT C#- 4 von=95 voff=80

BA 2 CR 1/24 TR 1 CH 1 NT F 3+23/24 voff=80

BA 2 CR 1/12 TR 1 CH 1 NT G# 3+11/12 voff=80

BA 2 CR 1/8 TR 1 CH 1 NT G# 3+7/8 voff=80

BA 2 CR 1/6 TR 1 CH 1 NT Eb' 3+5/6 voff=80

An example of midi conversion to string, using mid2asc from

http://www.archduke.org/midi/instrux.html

A.2. User Audio Input

The second input, and the more practical and

marketable one is regular speech recording. The typical

scenario in using this input would be the user sing into a

recording device (which is readily available in most

handheld device now, such as smartphone and tablets), the

recording get converted into a string, and the string is then

used as a pattern in searching for the song.

A typical recording input translation scheme

The issue that should be tackled in receiving a speech

input is the conversion from audio waves to a readable

string. This is possible using a pitch-detection algorithm

(PDA) that has been developed over the course of the

decade, and has been implemented in many end user

applications, notably in singing games that score

according to pitch correctness such as Ultra Star. The

algorithm would not be discussed in this paper, and all

points explained afterward will assume a precise

conversion from a user's speech to a string.

B. The Text

The text that would be searched is of course a

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

collection/database of songs. To be able to use this

collection of songs as the text in our string matching

algorithm, it should be represented as a string. One could

view the whole database as one big chunk of text,

concatenating the whole songs, or view the database as a

collection of patterns to iterate through the song finding

process.

This paper would not fully tackle the problem of

converting a huge database of song into string forms, nor

would it discuss the system used to manage and organize

the collection. Instead, this paper would assume a

separation in every song, and propose a simple system to

represent the songs and reduce it's size as much as

possible in regard to the characteristic of a song.

B.1. Reducing Repetition

It has been established that most songs includes

repetition (some even would count on it to better cement

the melody of the song to the listener's head). The

problem arising with this repetition is it causes a repeat in

the text, causing the pattern to search in the same

substring of text more than once. This could lead to

overhead in response time, one that should be easily

avoided.

It's a given that when redundancy occurs, we should

eliminate the redundancy, and that's what we will do in

this case. The problem would be, how small of a

redundancy should we eliminate. It's not possible to

eliminate a redundant note, because it might be a part of

the melody and reducing it to one note would change the

melody. It might also not right to remove a redundancy in

one bar of the song, because the user might remember the

song as having a two-bar hook. This paper would propose

repetition elimination by the song structure.

When a song repeats a verse, or a chorus, and there's no

notable difference between the first and second

verse/chorus, only one should be included in the text. In

typical modern pop song, the structure would be:

intro-verse-chorus-verse-chorus-bridge-chorus

This approach would reduce the text into:

intro-verse-chorus-bridge

Assuming all the parts have the same length, this

effectively eliminates the size of the text to only 4/7 of the

original length, or about 57% percent. This means in the

case of a full mismatch (the pattern does not exist in the

song), it reduces 43% of the search time. Of course this

does not apply to all songs, but considering the trend in

modern music industry, this should give a significant

boost to the algorithm.

B.2. Reducing Instruments

B.2.1. Main Melodic Line

Not all parts/instruments of a song are meant to be

catchy and remembered by the listener. Some more subtle

parts, like the bass and effect (especially in modern digital

music) are meant as an accompaniment to further

maximize the impacts of the main melody, like the vocal,

piano, or synths. The lines delivered by these melodically

strong instruments are usually the one stuck to the

listeners head, thus used as a search pattern to find the

song it was from. Although it doesn't mean that all the

subtler instruments would never be used as a search

pattern, it implies that including the whole melodic line of

a song in the text would not be necessary in most of the

cases.

In response to this, this paper proposes that the songs

stored in the database should be broken down to two

parts, according to the importance and impact it brings to

the song. The part with the most impact (and thus, more

likely to be remembered) should be separated and given a

higher priority searched as a text. We shall call this part

from here onward as the Main Melodic Line.

The main melodic line would mostly comprises of the

melodic instruments and vocal line, but not exclusively so.

A lot of music also incorporates subtler instruments like

the bass to deliver the hook, for example, the intro to

"Starlight" by the English rock band Muse. Because of

this, constructing the main melody line is not as simple as

dividing musical instruments; it's more complex than that.

It requires a careful listening of the music, picking out

instruments that stick out the most in every part of the

song. This is especially hard on songs that have multiple

layering of instruments, but seeing that the text would be

provided by the service, not the user, this would not be a

problem for the user. The heuristics to construct the main

melodic line is not covered on this paper.

B.2.2. Secondary Melodies

The secondary melodies would be all the melodic line

not included in the main melodic line. As we cannot

guarantee that the user would not use the subtler line as a

search pattern, we should also store these secondary

melodies in the database. The difference with the main

melodic lines would be the search priority. The main

melodic line would be searched first as a text, and then if

there's no text matching the pattern, the secondary

melodies would be searched.

There are some schemes possible in regard to the

searching priority. For example, you could search the

secondary melodies for a song right after the main

melodic line of it. Another scheme would be searching all

the main melodic line first, then the secondary melodies.

All this schemes would have advantage and

disadvantages, but it would not be discussed in this paper.

C. The Algorithm

There are two major algorithm of this string matching

approach. The first is the searching algorithm in the

database that dictates the order of which the text files are

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

matched to the pattern. The second is the string matching

algorithm itself, to find the pattern within a text file.

C.1. Database Search Algorithm

Since we were never concerned with the performance of

the algorithm, we will use a simple database search

scheme based on the structures we already established.

The database would comprise of individual files, each file

representing a song. In each files, two strings exists: the

main melodic line, and the secondary algorithm. For this

example, we would check the main melodic line first, and

then the secondary algorithm. Hence, the pseudo-

algorithm for this scheme would be:

function SearchSong(Database D, Pattern P):

 // Search main melodic lines

 FOR ALL mainmelodiclines M IN D:

 IF match(M, P):

 RETURN M

 // Search secondary melodies

 FOR ALL secondary melody SM IN D:

 IF match(SM, P):

 RETURN SM

 // Not found

 RETURN NULL

C.2. Pattern Matching Algorithm

C.2.1. Pitch Notation

Before we use the pattern matching algorithm, we

should define the notation for the pattern. Assuming a

very basic example song consisting of only one note long

notes and with a one octave range (no same notes with

different octaves), a numerical notation should suffice.

This numerical notation would have „1‟ as do, „2‟ as re,

„3‟ as mi, and so on. The reason of choosing a numerical

notation is because it‟s intuitive, where a higher note

means a higher numerical value, and it will help in solving

the pitch error that we will face later.

As an example, here‟s a string for a simplified “do-re-

mi-fa-sol-la-ti-la-sol-fa-mi-re-do”:

1234567654321

C.2.2. Basic Algorithm

In the simplest case, assuming that the user‟s input is

pitch and tempo perfect, for example a string produced

from MIDI. The input would also have a single octave

song range. In this case, the algorithm for matching a

pitch from user input into a song is reduced to basic string

matching, with the exactly same algorithm as we already

discussed in chapter II.A.

function BruteStringMatching(Pattern P, Text T):

// The position of the matching in P and T

i = 0

j = 0

WHILE pattern not found AND i < Size(T) –

Size(P):

 // Try to match

 IF (match(T[i],P[j])) // Match

 i++

 j++
 IF (j == Size(P)) // Pattern

found

 RETURN true

 ELSE

 i = i – j // return

 j = 0

// While ended, pattern not found

RETURN false

With the function match:
function match(char a, char b):

IF(!a == b)

RETURN false

 ELSE

 RETURN true

The reason of giving the matching process its own

function would be apparent later when we tackle the

problem related to the domain one by one. At this point,

it‟s proven that the string matching approach works for

simple cases. Here‟s one example to it:

A basic, example search

C.3. Correcting the String Matching Algorithm

It‟s already proven that in the case of an ideal user

input, with MIDI for example, a string matching approach

works well. But the same can‟t be said for inputs

originating from a user‟s vocal. The reason for this is that

user‟s vocal is prone to error, whether it‟s pitch error or

tempo error. The same also can‟t be said when the song

began to have a higher range, with the same note having a

different octave value. Here we will try to explore and

propose a solution for some of those problems.

C.3.1. Pitch Correction

A problem arises when the input taken is from a user's

recorded voice, such as humming, whistling, or singing.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

The problem is that we can't count on users to produce a

pitch-perfect vocal. Most people would sing a half note

flatter or sharper, especially in extreme region of the

octave (very high or very low). To facilitate this error, we

need to modify our algorithm so that it can tolerate some

of the note error produced. It should be able to take a

pattern that's only a note different, yet still producing a

match.

One solution would be giving a value to each character,

and then determine a tolerance value. A tolerance value T

would be the maximum difference between notes matched

that would still count as a match. This is the reason

why a numerical notation is chosen, because they

intrinsically already have a value assigned.

To implement this, we would just modify the function

match to facilitate error tolerance. The function would

then become:

 function match(char a, char b, int T):

IF(abs(int(a) – int(b)) > PT)

RETURN false

 ELSE

 RETURN true

This solution would add only a little modification to the

algorithm. Here‟s an example to illustrate the pitch

tolerance given:

A basic search with pitch tolerance

The problem of how big is the optimal tolerance to

maintain accuracy of the search is outside the scope of this

paper.

C.3.2. Tempo Correction

Another problem that occurs in using a manual vocal

input from user is the tempo. A single note can have

multiple lengths; it can be one note long or double that.

Moreover, we also can't count on the user to produce a

vocal with precise tempo. So, to facilitate this, we need to

modify our algorithm so that it also can take account of

the note length, and tolerate the length error produced by

the user's vocal.

There are two things we must consider: how to express

this note length in our numerical notation, and how to

allow tempo tolerance.

The proposed solution is to create a string of note

length; each character corresponds to the character in the

string of note pitch. These two strings would then be

stored in an array, and become the pattern. The same

would be done with the text, now our texts just become an

array of strings with size two. Regarding the tolerance of

tempo, we can just apply the same solution as the

tolerance of pitch. In implementing this solution, the

algorithm becomes so:

function BruteStringMatching(Pattern P, Text T):

// The position of the matching in P and T

i = 0

j = 0

WHILE pattern not found AND i < Size(T) –

Size(P):

 // Try to match

 IF (match(T[1][i],T[2][i],P[1][j],

P[2][j])) // Match

 i++

 j++

 IF (j == Size(P)) // Pattern

found

 RETURN true

 ELSE

 i = i – j // return

 j = 0

// While ended, pattern not found

RETURN false

 function match(char a, char la, char b,

char lb, int PT):

IF(abs(int(a) – int(b)) > PT) && (abs(int(la)

– int(lb)) > PT)

RETURN false

 ELSE

 RETURN true

Once again, this solution would add only a little

modification to the algorithm. Here‟s an example to

illustrate the pitch and tempo tolerance given:

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

IV. CONCLUSION

A string matching approach to finding songs is certainly

possible. Even though the scheme proposed above does

not have the necessary quality to be a usable scheme, but

it proves that such scheme is actually possible. The

optimization of the scheme could be done using a better,

more advanced string matching algorithm, such as Boyer-

Moore, or Knuth-Morris-Pratt.

V. FURTHER STUDIES

Further studies on this subject should cover the

following:

- A research into a better database search scheme,

possibly the benefits of inserting extra information

such as genres or singers to make the database

search quicker.

- The heuristics involved in making a main melodic

line, or an alternative proposal for reducing the

amount of strings that should be checked.

- A solution for the problems not covered in this

paper, such as complex songs with range more than

one octave, breaking down the note length to half a

note or shorter, and many more.

- A comparison of multiple string matching

algorithms in the problem domain, complete with

the calculation of their complexity.

REFERENCES

[1] Appen, Ralf von / Frei-Hauenschild, Markus AABA, Refrain,

Chorus, Bridge, Prechorus — Songformen und ihre historische

Entwicklung. In: Black Box Pop - Analysen populärer Musik. Ed.

by Dietrich Helms and Thomas Phleps. Bielefeld: Transcript 2012,

pp. 57-124. ISBN 978-3-8376-1878-5.

[2] D. Gerhard. Pitch Extraction and Fundamental Frequency: History

and Current Techniques, technical report, Dept. of Computer

Science, University of Regina, 2003.

[3] Huber, David Miles. "The MIDI Manual". Carmel, Indiana:

SAMS, 1991.

[4] Munir,Rinaldi. 2009. Diktat Kuliah IF3051 Strategi Algoritma.

Program Studi Teknik Informatika STEI ITB

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Desember 2013

ttd

Hafizh Adi Prasetya - 13511092

http://en.wikipedia.org/wiki/Special:BookSources/9783837618785
http://www.cs.uregina.ca/Research/Techreports/2003-06.pdf
http://www.cs.uregina.ca/Research/Techreports/2003-06.pdf

