
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Bottom-Up Dynamic Programming Approach in Cocke-

Younger-Kasami Algorithm for Efficient English Language

Grammar Checker

Genta Indra Winata (13511094)1

Computer Science/Informatics

School of Electrical Engineering and Infomatics

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

113511094@std.stei.itb.ac.id

Abstract—Parsing is a fundamental process in Computer

Science especially in natural language processing. It is the

process of analyzing string of symbols according to the rules

of a formal grammar which is context-free grammar. There

are multiple ways to parse strings and one of them is Cocke-

Younger-Kasami Algorithm. English Language has a rich

and complex grammar with varies of tenses and different

ways of implementation between the pronouns, quantifiers,

adjectives, verbs, adverbs, article, etc. The complexity of

English Language Grammar creates an issue where people

may easily get grammar error when writing their papers.

Therefore, this issue need to be minimized by using grammar

checking algorithm. One of the option is Cocke-Younger-

Kasami Algorithm (CYK). CYK Algorithm employs bottom-

up parsing and dynamic programming. CYK operates on

context-free grammars in given Chomsky normal

form(CNF). The algorithm has a high efficiency in parsing

with the most efficient parsing algorithm in terms of worst

case running time O(n3.|G|) where n is the length of the parsed

string and |G| is the size of the CNF grammar.

Index Terms— parsing, grammar, algorithm, dynamic

programming

I. INTRODUCTION

Recently, natural language processing has been a

popular topic in Computer Science. One of the application

is text parsing. In this paper, the writer will discuss about

dynamic programming approach to one of the application

in the Context-free Grammar (CFG) parsing. CYK is one

of the example. In order, to operate a standard CYK

algorithm, the grammar in the production rules must be in

Chomsky Normal Form (CNF). The implementation of

CYK applies production rules and comprises two type

symbols such as nonterminal and terminal symbols.

Today, English Language is widely used in many

countries and many essays and papers are written in

English Language. But recently a problematic issue

overcomes, related to the wrong grammar usage. The

correctness of the sentences is very essential to many

academic and business purposes. It is hard to determine all

words by humans' eyes and certainly, human makes

mistake(s) in grammar checking. Therefore, automated

error checking is needed to help human in detecting the

grammar errors.

English language has a rich and diverse of grammar.

The grammar usage used many parameters to determine

whether a sentence is a valid grammar or not. The

parameters are pronouns, determiners and quantifiers,

possessives, adjectives, adverbials, verbs, nouns, clause,

phrases and sentence. The permutation of two or more of

above parameters creates grammar rules. The grammar

rules will be used as a base to resolve the validity of a

sentence. The validity of a sentence is very important in

One of the approach to determine the validity of sentence

of a grammar is by using CYK algorithm. This algorithm

using dynamic programming bottom-up approach by

collects all nonterminal and terminals symbols from the

rules given. This algorithm is highly efficient and has the

most efficient worst-case asymptotic complexity with

O(n3.|G|) where n is the length of the parsed string and |G|

is the size of the CNF grammar. [5]

II. FUNDAMENTAL THEORIES

2.1 Dynamic Programming

Dynamic Programming solves problems by combining

the solutions to subproblems.[1] When developing this

algorithm, we may follow four steps.[1]

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, typically in

a bottom-up fashion

4. Construct an optimal solution from computed

information.

2.2 Bottom-up Dynamic Programming Approach

Bottom-up technique uses table in the computation of

dynamic programming algorithm. This is actually the 'true

form' of dynamic programming as it was originally known

as 'tabular method'[2]. There are steps to build this

approach:[2]

1. Determine the required set of parameters that uniquely

describe the problem (the state).

2. If there are N parameters required to represent the state,

prepare N dimensional Dynamic Programming Table.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

3. Now, with the base-case states in the Dynamic

Programming table already filled, determine the state that

can be filled next. Repeat this process until the Dynamic

Programming table is complete.

This technique usually can be done using loops rather than

recursive method. For instance, we are using bottom-up

approach in solving fibonacci problem:

1 Fibonacci(n)
2 Declare a table of integer fib[n]
3 Let fib[0] and fib[1] be 1
4 For each I from 2 to n do:
5 Let fib[i] be fib[i-1] + fib[i-2].
6 End for
7 return fib[n].

The above algorithm shows the implementation of getting

fibonacci number by bottom-up approach. At line 2, we

firstly have to declare a table of integer as a place for

putting all computations that wiil be done at line 4 to 6. At

line 3, we assign the zero's and first index with 1 as the

base. Later in line 4-6, every value of fib[i] is assigned with

the addition of the two consecutive previous elements.

Finally at line 7, the function returns the nth fibonacci

number.

For the illustration, we can take a look the figure below:

Picture 1 – Bottom-Up DP Illustration

2.3 Formal Grammar

A formal grammar comprises a set of production rules

for strings in a formal language. The rules shows how to

form a string from the valid character of the language

according to the language's syntax.

A grammar is a tuple G = (V, T, S, P) where

- V is a finite, non-empty set of symbols called variables

(or not-terminals or syntactic categories)

- T is an alphabet of symbols called terminals

- S ∈ V is the start symbol of the grammar

- P is a finite set of production α → β where α ∈ (V ∪ T)+

and

 β ∈ (V ∪ T)∗

For example :

V = {Sentence, Subject, Verb, Object}

T = {I, You}

S = {Sentence}

P = {Sentence -> Subject Verb Object,

Verb->eat,

Object->orange}

A valid sentence for above example is “I eat orange”.

Sentence “I eat orange” is valid because it obeys the

production rules.

Sentence -> Subject Verb Object

Subject -> I

Verb -> eat

Object -> orange

2.4 Context-free Grammar

Context-free Grammar (CFG) is a formal grammar with

a set of recursive rewriting rules or productions used to

generate patterns of strings.[6] CFG has production rule in

the form of

 V → w

where V is a single nonterminal symbol and w is a string

of terminal/nonterminal (can be empty).

A CFG consists of several components such as terminal

symbols, nonterminal symbols, productions and a start

symbol.

a. Terminal Symbols

Symbols which are the characters of the alphabet

appear in the string generated by the grammar.

b. Nonterminal Symbols

Symbols which are placeholders for pattern of terminal

symbols and can be generated by nonterminal symbol.

c. Productions

Rules for replacing nonterminal symbols or terminal

symbols.

d. Start Symbol

A special nonterminal symbol that appears in the initial

string generated by the grammar.

For example:
S → aSa,
S → bSb,
S → ε

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

A typical derivation in this grammar is
S → aSa → aaSaa → aabSbaa → aabbaa

2.5 Cocke-Young-Kasami Algorithm

Cocke-Young-Kasami (CYK) is a parsing algorithm for

context-free grammars. This algorithm's name came from

three inventors, John Cocke, Daniel Younger and Tadao

Kasami and it employs bottom-up dynamic programming

approach. Here are the pseudo code of CYK algorithm:

1 let the input be a string S consisting of n
characters: a1 ... an.

2 let the grammar contain r nonterminal
symbols R1 ... Rr.

3 This grammar contains the subset Rs which is

the set of start symbols.
4 let P[n,n,r] be an array of booleans.
Initialize all elements of P to false.
5 for each i = 1 to n
6 for each unit production Rj -> ai

7 set P[i,1,j] = true
8 for each i = 2 to n -- Length of span
9 for each j = 1 to n-i+1 -- Start of span
10 for each k = 1 to i-1 -- Partition of
span
11 for each production RA -> RB RC

12 if P[j,k,B] and P[j+k,i-k,C] then
set P[j,i,A] = true
13 if any of P[1,n,x] is true (x is iterated
over the set s, where s are all
the indices for Rs) then

14 S is member of language
15 else
16 S is not member of language

This algorithm consider every possible subsequence of

the sequence of words and sets P[i,j,k] to be true starting

from I of length j can be generated from Rk. It has

considered subsequences of length 1 and goes to greater

length. It considers every possible partition of the

subsequence of two part and check if there is a production

P → Q R. if so, it records P as matching the whole

sequence. Once the process is completed, the sentence is

recognized by the grammar.

In the CYK algorithm, the production rules are saved

in the form Chomsky Normal Form (CNF). There are

three forms of CNF:

A → BC or
A → α or
S → ε

where A, B and C are nonterminal symbols, α is a terminal

symbol, S is the start symbol, and ε is the empty string.

This is one of the example grammar:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> he
V -> drinks
P -> with
N -> juice
N -> straw
Det -> a

From above grammar, we can form a table where in each

row has the increment of number of words:

Picture 2 - Table

From the Picture 2, we can conclude that the sentence

(“she eats a fish with a fork”) obey the production rules, it

is also convinced by the value of P[1,7,Rs] (top left record).

The value is true.

III. ENGLISH LANGUAGE GRAMMAR PRODUCTION

RULES

In this paper, the writer will be using simple common

grammar rules used. Here are the production rules:

S -> TIME S | S PRESENT_CONJUNCTION1 | SUBJECT1
TO_BE | SUBJECT2 TO_BE | OTHER_SUBJECT TO_BE |
SUBJECT1 PRESENT_VERB1 | SUBJECT1 PRESENT_COM1
| SUBJECT2 PRESENT_VERB2 | SUBJECT2
PRESENT_COM2 | OTHER_SUBJECT PRESENT_COM2 |
SUBJECT1 PAST_COM | SUBJECT2 PAST_COM |
SUBJECT1 FUTURE_COM | SUBJECT2 FUTURE_COM

//TIME
TIME -> RECENTLY | TODAY

//CONJUNCTION
PRESENT_CONJUNCTION1 -> C_AND S | C_AND
PRESENT_COM1 | C_OR S | C_OR PRESENT_COM1 |
C_BUT S | C_BUT PRESENT_COM1

C_AND -> AND
C_OR -> OR

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

C_BUT -> BUT

PRESENT_COM1 -> PRESENT_VERB1 OBJECT
PRESENT_COM2 -> PRESENT_VERB2 OBJECT
PAST_COM -> PAST_VERB OBJECT
FUTURE_COM -> FUTURE_VERB OBJECT

TO_BE -> PRESENT_TO_BE ADJECTIVE | PAST_TO_BE
ADJECTIVE | FUTURE_TO_BE ADJECTIVE |
PARTICIPLE_TO_BE ADJECTIVE | PRESENT_TO_BE
COMBINATION_OBJ | PAST_TO_BE COMBINATION_OBJ |
FUTURE_TO_BE COMBINATION_OBJ

COMBINATION_OBJ -> ARTICLE COMBINATION_ADJ
ARTICLE -> A | AN

// TO BE
PRESENT_TO_BE -> IS | ARE
PAST_TO_BE -> WAS | WERE
FUTURE_TO_BE -> WILL
PARTICIPLE_TO_BE -> HAS | HAVE

SUBJECT1 -> WE | THEY | YOU | I
SUBJECT2 -> SHE | HE | IT
OTHER_SUBJECT -> MICHAEL | GENTA | INDRA |
WINATA | EVAN | JAMES | SONNY | CH | KELVIN |
DAVID | ARINI | SALVIAN
PRESENT_VERB1 -> EAT | DRINK | SMELL | TASTE |
PLAY | DRIVE | LOVE
PRESENT_VERB2 -> EATS | DRINKS | SMELLS |
TASTES | PLAYS | DRIVES | LOVES
PAST_VERB -> ATE | DRANK | SMELT | TASTED |
PLAYED | DROVE | LOVED
FUTURE_VERB -> EATEN | DRUNK | SMELT | TASTED |
PLAYED | DRIVEN | LOVED
OBJECT -> MOUSE | CHICKEN | JUICE | SYRUP |
ORANGE | ADJECTIVE OBJECT

ADJECTIVE -> HAPPY | SAD | CLUMSY | GREAT |
GOOD | COOL

In the production rules above are writer in Chomsky

Normal Form (CNF). From above rules we can have many

words combination that can be formed into sentences by

combining subjects, verbs, nouns, adjectives, pronouns and

also considering the time which the action takes place. “S”

will the start state and the state points to the next state based

on the rules. For example, state S has a production rule,

S -> S PRESENT_CONJUCTION1

S will recursively go back to state S and afterwards go to

state PRESENT_CONJUCTION1 for the next string on the

right of the recursive process. Then in

PRESENT_CONJUCTION1 state will parse either

C_AND S or C_AND PRESENTS_COM1 or C_OR S or

C_OR PRESENT_COM1 or C_BUT S or C_BUT

PRESENT_COM1. From these options, there are varies of

sentence combinations. For instances,

 I LOVE ORANGE AND EAT ORANGE

 I LOVE ORANGE OR DRINK SYRUP

“I LOVE ORANGE AND EAT ORANGE” comes from

several production rules such as

S -> S PRESENT_CONJUNCTION1
PRESENT_CONJUNCTION1 -> C_AND PRESENT_COM1
PRESENT_COM1 -> PRESENT_VERB1 OBJECT
PRESENT_VERB1 -> LOVE | EAT
OBJECT -> ORANGE | SYRUP

IV. IMPLEMENTATION COCKE-YOUNGER-KASAMI

ALGORITHM IN ENGLISH LANGUAGE GRAMMAR

CHECKER

4.1 Cocke-Younger-Kasami Algorithm Implementation

From the grammar stated before, we can implements

them by using Cocke-Younger-Kasami Algorithm. We

firstly begin with state S as the start state. Then, we

continue to initialize all the table’s elements into false and

determine nonterminal symbols. Then, all the nonterminal

symbols are included in the grammar and for each unit

production with length 1 is set to true and continue for

length 2, 3 and so on. After we achieve the max length, we

can determine the validity of the sentence. For this case,

the nonterminals symbols are noun, pronouns, verbs, to be,

etc.

Here are the interface of the application that has been

built by the writer that used to check strings’ grammar:

Picture 3 – Application Graphic User Interface with Valid

Sentence

Picture 3 shows the input sentence and the result after

the validation process. Sentence “TODAY I LOVE

ORANGE AND EAT ORANGE” is valid. The above test

case spends 79 milliseconds. Here are the CYK Table from

Picture 3 test case for a better illustration.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Picture 4 – CYK Table from Picture 3

This is the example with invalid sentence by using

sentence “TODAY IS BIG ORANGE”.

Picture 4 - Application Graphic User Interface with

Invalid Sentence

Picture 4 shows the invalid input sentence “TODAY IS

BIG ORANGE”. There is no production rule that match

with the sentence, so it prints Error.

Here are the CYK Table from Picture 4 test case for a

better illustration.

Picture 5 - CYK Table from Picture 4

The above table built from sentence “TODAY IS A BIG

ORANGE” and stopped at the third row when trying to

concatenate 2 strings “TODAY” and “IS A BIG

ORANGE”, therefore the sentence is invalid. There is no

combination word “today” and “is a big orange” based on

the production rules in the grammar that has been stated

before.

4.2 Algorithm Analysis and Testing

This algorithm has a polynomial time and has the most

efficient worst-case asymptotic complexity with O(n3.|G).

Here are the statistics taken by experiment with 10

samples:

Test

Case

Sentence Time

1 JAMES IS HAPPY 20 ms

2 HE IS SAD 8 ms

3 TODAY I LOVE ORANGE

AND EAT ORANGE

35 ms

4 HABIBIE IS COOL 39 ms

5 WE TASTE SYRUP AND

DRINK JUICE

29 ms

6 SONNY LOVES MOUSE 14 ms

7 JAMES WAS GOOD 8 ms

8 TODAY CH IS GOOD 20 ms

9 THEY EAT CHICKEN AND

DRINK JUICE

31 ms

10 THEY EAT CHICKEN 8 ms

Table 1 – Experiment Result

Table 1 shows a progressive increment as the words’

length increase. For a more tangible result, there is a bar

chart below:

Picture 6 – Bar Chart

Picture 6 shows the differentiation of time spent by

number of words. The increment of time between the

number of words is doubled. The implementation of

Cocke-Younger-Kasami Algorithm in the English

grammar checker shows a good sign that this algorithm

forms an excellent result. The overall average of time spent

is 21.0 milliseconds from 5.1 characters. Moreover, we can

conclude that this algorithm has a pattern to be a

polynomial time algorithm.

0

20

40

Length

Bar Chart

3 4 6 7

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Length of Word Average Time

(ms)

Checking if the

O(n3), with

length of word 3

character and

avg time 16 ms

3 16 16

4 20 21

6 30 32

7 35 37

Table 2 – Approximation of Algorithm’s Worst Time

The above table emphasizes that the algorithm is

polynomial time algorithm with the approximation with

O(n3) algorithm. Furthermore, the algorithm will be an

option in English Language Grammar Checking.

V. CONCLUSION

Cocke-Younger-Kasami Algorithm is an efficient

algorithm in language grammar parsing with worst time

complexity O(n3.|G|) where n is the length of the parsed

string and |G| is the size of the CNF grammar. It is also

known well as the algorithm with the best in worst-case

asymptotic complexity. The subjects, verbs, nouns,

adjectives, pronoun, article, and time reference are known

as the nonterminals and value of each component becomes

the terminals of the grammar.

The implementation of Cocke-Younger-Kasami

Algorithm is very useful in checking English Language

Grammar. This algorithm would able to check whether a

sentence obey the grammar rules or not by building the

production rules within the grammar.

VII. ACKNOWLEDGMENT

First of all, I would thank to God for His perfect

providence while preparing, writing, and editing the paper.

Then, I deeply express my thanks to my advisors, Dr. Ir.

Rinaldi Munir and Dr. Masayu Leylia Khodra, whose help,

advice, and support. I also thank to my parents and friends

for the prayers and valuable courage given to me. Finally,

I would thank to Institut Teknologi Bandung for the

hospitality and support during the completion of the paper.

REFERENCES

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein, Introduction to Algorithms 3rd, Massachusetts: MIT
Press, 2009

[2] Halim, Steven. Halim, Felix, Competitive Programming 3 The New
Lower Bound of Programming Contests, Singapore: Lulu, 2013

[3] Munir, Rinaldi, Diktat Kuliah Strategi Algoritma 3rd, Bandung:

Institut Teknologi Bandung , 2009
[4] Hopcroft John E., Motwani, Rajeev, Ullman, Jeffrey D,

Introduction to Automata Theory, Languages, and Computation 2nd,

CA:Pearson Education, 2001
[5] http://www.fact-index.com/c/cy/cyk_algorithm.html

[6] http://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cf

g.html 1:09 PM 18/12/2003

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

Genta Indra Winata

http://www.fact-index.com/c/cy/cyk_algorithm.html
http://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html
http://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html

