
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Movement Search Algorithm in Strategy RPG Video

Games

Mahessa Ramadhana - 13511077

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

mahessaramadhana@itb,ac,id

Abstract—A strategy RPG (SRPG) is complex video game

that benefits from having proper algorithm strategies. The

game usually requires the player to pick a square in the map

in order to move units. This movement is, however, limited,

so the game needs to provide a way to check which squares

each units can move to, and also to find a path from current

unit’s square to its destination square. This function is crucial

and will be used very often, so a robust, reliable, and efficient

algorithm will be very helpful. This paper will study an

algorithm that can solve this problem efficiently.

Index Terms—SRPG, path, search, movement.

I. INTRODUCTION

A video game is an application which focuses more on

the fun aspect. Usually, video games have appealing,

interactive UI, and a lot of different, complex algorithm to

provide the player with some mechanics to play with. The

very first video games are very simple, due to the limits of

the hardware’s processing power, however as hardware

becomes more powerful, more complex games have

emerged. There are a lot of different kinds of video games,

one of them is a strategy RPG (SRPG) game. This type of

game have many complex algorithm inside, hidden from

the players that enable them to play the game properly.

An SRPG is a video game where we have several units

on a map. Some of those units belong to the player, while

the others belong to the enemy. Each unit waits for their

turn, if a player’s unit gets a turn, player need to input a

command to have the unit act, and if enemy’s unit gets a

turn, the computer will decide how the unit should act. This

action may include move, attack, and many other actions

depending on the video game’s mechanic. The map is

usually divided into squares, where each square may be

occupied by one unit. In more complex games, certain

squares may be more difficult or easier for certain units to

move. For example, water squares are harder for normal

units to move in, but aquatic units move better in water than

on the ground. Some squares can’t be reached by a unit no

matter what, but may be accessible by other units. For

example, a flying unit may go beyond a cliff and stay

afloat, while ground units can’t. Or a fortress that no unit

can go through and thus have to find a way around. Or

squares containing enemy unit where the player cannot

pass.

Fig. 1 Fire Emblem, one of the very first SRPG.[1]

Some of these complex algorithm requires an algorithm

strategy in order to solve it in the most efficient manner.

Despite hardwares getting more powerful, a complex video

game can still be tasked with a lot of computing-heavy

tasks, and some video games will need to run on a portable

platform with relatively limited hardware powercompared

to desktops, so using an efficient algorithm is required. One

of those algorithm in an SRPG is the search algorithm to

find which squares each units can move to and the path to

get to said square.

In an SRPG, player doesn’t move each unit per step;

instead, player moves each unit by selecting a square for

the unit to move to. Every unit has its own move points,

which indicates how far he can move. However, as

mentioned earlier, certain squares have different difficulty

for units to move in. A high movement ground unit still

can’t move very far in water, for example. This means that

the game needs to do a search for squares that the unit can

actually reach, based on its movement, its terrain

proficiency, and the surrounding terrain that it’s going to

move in. Additionally, since games need to be animated,

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

we also need fo find the path from the unit’s current square

to its destination in order to animate the unit actually

moving to the destination instead of just teleporting away.

These problem require proper algorithm to make sure every

solution is correct, and that every path is the most optimal

path.

Fig. 2 Movement range in Front Mission 4[2]

 In Fig. 2, we can see an example of what the game needs

to show the player. The blue squares indicate squares that

the unit can reach. The unit can’t go to squares that are not

blue.

To sum it up, the game needs an algorithm to find all

reachable squares and all optimal paths to the reachable

squares based on these criteria:

1. Each unit has its own movement points.

2. Each square has a cost. Visiting the square require

the unit to have enough movement points.

3. Cost may be dependent on the unit’s terrain

proficiency.

4. If a square’s total cost from the unit’s current

position if higher than the unit’s movement points,

the unit can’t reach that square.

Fig. 3 Some squares cannot be reached due to

obstacles.[3]

II. THEORIES

For this purpose, we will base our algorithm on

Djikstra’s algorithm, modified to fit the four criteria above

and the game’s mechanic.

Djikstra’s algorithm is an algorithm that can be used to

find the shortest-path and the distance from a node to every

other node in a graph. To accomplish this, Djikstra’s

algorithm uses several terms and steps to describe and

solve the problem.

A node has a distance which represents an estimation of

its distance from the source through an estimated shortest-

path. It is only “estimated” because it may not always hold

the shortest-distance throughout the algorithm, but it will

end up holding the shortest-distance when the algorithm

ends.

A node also has a status label. A node’s status begins as

unvisited. As the algorithm runs, each node that the

algorithm expands is marked as visited. A visited node

longer be checked.

A node also has a predecessor. This represents, in the

shortest-path including said node, the node before the said

node. For example, if the shortest path is A-B-C-F, then F’s

predecessor would be C, and C’s predecessor would be C.

Current node is the node which is currently expanded.

We will cover more about expanding a node in the steps

explanation below.

With these terms, Djikstra algorithm work in these steps:

1. Assign the source node’s distance to zero.

2. Assign all the other node’s distance to infinity.

3. Mark all nodes unvisited.

4. Set source node as the current node.

5. Expand current node by checking all of its unvisited

neighbors and calculate their distance. For example,

if current node is A with a distance of 3, and the

edge connecting to B has a weight of 4, then B’s

distance through A is 7.

6. For each neighbor, if the distance calculated is

lower than its current distance, update its distance,

and set its predecessor as the current node.

7. After all neighbors has been calculated, mark the

current node as visited.

8. Select an unvisited node with the smallest distance.

9. If all nodes has been visited, or if the selected node’s

distance is infinity, then stop the algorithm.

Otherwise, set it as current node. Repeat step 5.

 At the end of the algorithm, all nodes will have their

distance set as the shortest distance to source, their

predecessor set as the nodes that come before them in the

shortest-path, and all nodes unreachable from source node

will still hold infinity as their distance.

An example of how Djikstra’s algorithm works:

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Fig 3. Graph for Djikstra example [4]

Using this graph, first we set all node’s distance to

infinite, but set the source to zero. Also, set all nodes as

unvisited. Set source node as the current node. Therefore

we have this table (* next to a node indicates it’s the current

node):

Node Distance Visited Predecessor

1* 0 F -

2 INF F -

3 INF F -

4 INF F -

5 INF F -

6 INF F -

Table 1a. Djikstra table.

Next, we check all of current nodes’ unvisited

neighbors. In this case, we check nodes 2, 3, and 6,

calculate their distance and update the table if necessary.

From the calculation, we found that node 2, 3, and 6’s

distances are 7, 9, and 16 respectively. These are lower

than infinity, so update node 2, 3, and 6’s distance in the

table and set their predecessor to current node. Mark

current node as visited. Then, check all unvisited node,

pick one with the smallest distance, and set it as current

node.

Node Distance Visited Predecessor

1 0 T -

2* 7 F 1

3 9 F 1

4 INF F -

5 INF F -

6 14 F 1

Table 1b. Djikstra table.

Repeat the above step; this time, we check node 2’s

unvisited neighbors 3 and 4 (node 1 is a visited neighbor s

we do not check it). We calculate that through node 2, node

3 and 4’s distances are 17 and 22 respectively. 17 is larger

than 9, so we do not update node 3, but 22 is smaller than

INF, so we update node 4’s distance to 22 and set its

predecessor to 2. Mark current node as visited, pick one

unvisited node with the smallest distance, and set it as

current node.

Node Distance Visited Predecessor

1 0 T -

2 7 T 1

3* 9 F 1

4 22 F 2

5 INF F -

6 14 F 1

Table 1c. Djikstra table.

Now we expand node 3. Node 3’s unvisited neighbors

are node 4 and 6. Their distances through 3 are 20 and 11

respectively. Both of these values are smaller than their

counterpart in the table, so update the table accordingly.

Node Distance Visited Predecessor

1 0 T -

2 7 T 1

3 9 T 1

4 20 F 3

5 INF F -

6* 11 F 3

Table 1d. Djikstra table.

Repeat the steps until done.

Node Distance Visited Predecessor

1 0 T -

2 7 T 1

3 9 T 1

4* 20 F 3

5 20 F 6

6 11 T 3

Table 1e. Djikstra table.

Node Distance Visited Predecessor

1 0 T -

2 7 T 1

3 9 T 1

4 20 T 3

5* 20 F 6

6 11 T 3

Table 1f. Djikstra table.

Node Distance Visited Predecessor

1 0 T -

2 7 T 1

3 9 T 1

4 20 T 3

5 20 T 6

6 11 T 3

Table 1g. Djikstra table.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

With this, we now have the distance from node 1 to

every other node, and we can also determine the shortest

path. For example, to get to 5, we can see that 6 comes

before 5, 3 comes before 6, and 1 comes before 3, so the

path is 1-3-6-5.

While Djikstra’s algorithm certainly works on such a

graph, if we were to use it on an SRPG, we have to modify

it in order fit the criteria described above. While the basic

principle is the same, there are a lot of difference is an

SRPG mechanic with a graph.

III. MOVEMENT SEARCH ALGORITHM

We have covered the basics of movement in an SRPG

and how Djikstra’s algorithm in general works. However,

we now need to modify Djikstra’s algorithm in order to get

the result we want.

First of all, we assume each square is a node in a graph.

Very obvious, since each square acts exactly like a node in

a graph. We can go from square to square just like we go

from node to node.

Since we do not have adjacency matrix, we set the

weight of an edge between two nodes as the cost of

entering the destination node.

10 10 15

20 20 25

10 15 INF

Table 2 Squares on a map with their costs.

0 10 − 20 − − − − −
10 0 15 − 20 − − − −
− 10 0 − − 25 − − −
10 − − 0 20 − 10 − −
− 10 − 20 0 25 − 15 −
− − 15 − 20 0 − − −
− − − 20 − − 0 15 −
− − − − 20 − 10 0 −
− − − − − − − − −

Table 3 Adjacency matrix from Table 2

For example, if squares on a map and their costs are

represented in Table 2, we can make an adjacency matrix

like the one in table 3. In practice though, we do not need

to make such adjacency matrix. All we need at the

neighbors distance calculating step is to find each

neighbors cost and use it to calculate the distance. It should

be noted that, as mentioned above, the cost of each square

may be dependent upon the unit’s terrain proficiency. So

unit A and unit B may have different costs for each square.

Next modification is to change the table approach to a

list approach. Instead of having a table containing all

squares, their distances, their status, and their predecessor,

we make a list instead. Our step becomes like this:

1. Make a new list of squares. Each entry in the list

contains the square, the distance, status, and

predecessor.

2. Push the unit’s square into the list, set the distance

to zero, status unvisited.

3. Set current square to unit’s square.

4. Expand current square by checking all of its

neighboring squares. Calculate the distance to each

neighbors.

5. For every unvisited neighbors, first check if the

distance is smaller or equal to the unit’s movement

points, then check if it is already in the list. If it is,

update distance and predecessor if the calculated

distance is smaller than the one in the list. If not, add

the square to the list with its distance and

predecessor, set it to unvisited.

6. After all neighbors has been calculated, mark the

current node as visited.

7. From the list, look for a square that is unvisited and

has the lowest distance.

8. If all squares are already visited, then stop.

Otherwise, set it as current square. Repeat step 4.

Using this steps, we will stop the search once all

reachable squares has been visited, and skip expanding

squares which is not yet determined to be reachable.

Otherwise, the algorithm will search for all squares on the

map, which is very time consuming. Most of the time, the

reachable area is just a fraction of the whole map, so using

this limit will speed up the calculation considerably.

Another modification we can make is at step 7. If we

know the minimum cost of a square, we can ignore squares

whose distance + minimum square is larger than the unit’s

movement points. This modification is not applicable if we

do not know the minimum cost of square.

10 21 20 25 20 15 10

15 20 20 25 25 20 20

20 15 INF 20 10 20 15

25 20 10 S 10 10 20

15 25 INF INF 10 15 25

20 10 15 10 10 15 10

25 15 15 20 25 10 15

Table 4 Example squares

We test the algorithm above on the map above. Suppose

the unit’s movement points is 50. The minimum cost of a

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

square is 10. First, we have a list containing only the S

square (3,3) and its information

Square Distance Visited Predecessor

3,3* 0 F -

Table 5a Movement search table

Using the steps defined above, we get:

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 F 3,3

2,3* 10 F 3,3

4,3 10 F 3,3

Table 5b Movement search table

Keep repeating the steps until the algorithm is done.

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 F 3,3

2,3 10 T 3,3

4,3* 10 F 3,3

1,3 30 F 2,3

Table 5c Movement search table

Square Distance Visited Predecessor

3,3 0 T -

3,2* 20 F 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3 30 F 2,3

4,2 20 F 4,3

5,3 20 F 4,3

4,4 20 F 4,3

Table 5d Movement search table

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 T 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3 30 F 2,3

4,2* 20 F 4,3

5,3 20 F 4,3

4,4 20 F 4,3

3,1 45 F 3,2

Table 5e Movement search table

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 T 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3 30 F 2,3

4,2 20 T 4,3

5,3* 20 F 4,3

4,4 20 F 4,3

3,1 45 F 3,2

4,1 45 F 4,2

5,2 40 F 4,2

Table 5f Movement search table

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 T 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3 30 F 2,3

4,2 20 T 4,3

5,3 20 T 4,3

4,4* 20 F 4,3

3,1 45 F 3,2

4,1 45 F 4,2

5,2 40 F 4,2

6,3 40 F 5,3

5,4 35 F 5,3

Table 5g Movement search table

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 T 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3* 30 F 2,3

4,2 20 T 4,3

5,3 20 T 4,3

4,4 20 T 4,3

3,1 45 F 3,2

4,1 45 F 4,2

5,2 40 F 4,2

6,3 30 F 5,3

5,4 35 F 5,3

4,5 30 F 4,4

Table 5h Movement search table

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 T 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3 30 T 2,3

4,2 20 T 4,3

5,3 20 T 4,3

4,4 20 T 4,3

3,1 45 F 3,2

4,1 45 F 4,2

5,2 40 F 4,2

6,3 40 F 5,3

5,4 35 F 5,3

4,5* 30 F 4,4

1,2 45 F 1,3

Table 5i Movement search table

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 T 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3 30 T 2,3

4,2 20 T 4,3

5,3 20 T 4,3

4,4 20 T 4,3

3,1 45 F 3,2

4,1 45 F 4,2

5,2 40 F 4,2

6,3 40 F 5,3

5,4* 35 F 5,3

4,5 30 T 4,4

1,2 45 F 1,3

3,5 40 F 4,5

5,5 45 F 4,5

Table 5j Movement search table

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 T 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3 30 T 2,3

4,2 20 T 4,3

5,3 20 T 4,3

4,4 20 T 4,3

3,1 45 F 3,2

4,1 45 F 4,2

5,2* 40 F 4,2

6,3 40 F 5,3

5,4 35 T 5,3

4,5 30 T 4,4

1,2 45 F 1,3

3,5 40 F 4,5

5,5 45 F 4,5

Table 5k Movement search table

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 T 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3 30 T 2,3

4,2 20 T 4,3

5,3 20 T 4,3

4,4 20 T 4,3

3,1 45 F 3,2

4,1 45 F 4,2

5,2 40 T 4,2

6,3* 40 F 5,3

5,4 35 T 5,3

4,5 30 T 4,4

1,2 45 F 1,3

3,5 40 F 4,5

5,5 45 F 4,5

Table 5l Movement search table

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 T 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3 30 T 2,3

4,2 20 T 4,3

5,3 20 T 4,3

4,4 20 T 4,3

3,1 45 F 3,2

4,1 45 F 4,2

5,2 40 T 4,2

6,3 40 T 5,3

5,4 35 T 5,3

4,5 30 T 4,4

1,2 45 F 1,3

3,5* 40 F 4,5

5,5 45 F 4,5

Table 5m Movement search table

Square Distance Visited Predecessor

3,3 0 T -

3,2 20 T 3,3

2,3 10 T 3,3

4,3 10 T 3,3

1,3 30 T 2,3

4,2 20 T 4,3

5,3 20 T 4,3

4,4 20 T 4,3

3,1 45 F 3,2

4,1 45 F 4,2

5,2 40 T 4,2

6,3 40 T 5,3

5,4 35 T 5,3

4,5 30 T 4,4

1,2 45 F 1,3

3,5 40 T 4,5

5,5 45 F 4,5

Table 5n Movement search table

We end the algorithm at this stage since the remaining

unvisited nodes’ distances plus the minimum cost of a

square is larger than the unit’s movement points. Thus,

the reachable squares are:

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

10 21 20 25 20 15 10

15 20 20 25 25 20 20

20 15 INF 20 10 20 15

25 20 10 S 10 10 20

15 25 INF INF 10 15 25

20 10 15 10 10 15 10

25 15 15 20 25 10 15

Table 6 Reachable squares

We can also determine the path that the unit should

take to get to a certain square. For example, to get to

(3,5), we see that (4,5) comes before (3,5), (4,4) comes

before (4,5), (4,3) comes before (4,4), and (3,3) comes

before (4,3). Thus, the path to get to (3,5) is

(3,3) – (4,3) – (4,4) – (4,5) – (4,5).

This is also used during the enemy turn, for the

computer to determine where can its units move to. For

the computer side, we also need an algorithm to

determine the best square to go to out of all the reachable

squares, however, it is beyond the scope of this paper.

IV. CONCLUSION

An SRPG requires an algorithm to search for squares

that units can reach. This search algorithm can be derived

from Djikstra’s shortest-path algorithm with some

modifications to fit the problem better. The resulting search

is accurate and efficient..

REFERENCES

[1] http://www.gamefaqs.com/nes/562649-fire-emblem-ankoku-ryu-
to-hikari-no-tsurugi/images/screen-7

[2] http://www.gamefaqs.com/ps2/918883-front-mission-

4/images/screen-4
[3] http://vglounge.com/wp-content/uploads/2012/04/Hoshigami-3.jpg

[4] http://en.wikipedia.org/wiki/File:Dijkstra_Animation.gif

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

ttd

Mahessa Ramadhana 13511077

