
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

Pattern Matching in Simple Audio Recognition

Felicia Christie - 13512039

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13512039@std.stei.itb.ac.id

Abstract—Audio recognition is now popularly used. For

example, almost every smartphone distributed nowadays

has a build-in audio recognition function to translate speech

to text, or to receive orders by sound or by speech. This

paper discusses the general method to compare an audio

pattern to an audio ‘text’ by using the means of string

matching algorithms

Index Terms—audio, string matching, pattern matching,

sound

I. INTRODUCTION

In this modern era, the use of audio has expanded from a

method of communication to a method of education,

entertainment, relaxation and even employment. In order to

provide users a better service, many smartphones now has

a build-in speech recognition program for users who

prefer aurally stating what they request from the phone

instead of the regular method of pressing buttons or

touching screens, in cases where their hands are not

available for that particular use.

Another popular usage of audio recognition is security.

Audio recognition provides security by recognizing the

speech patterns of a certain user, then when another user

requests access to a particular protected data, the security

system will prompt an audio input, for example, a

particular keyword. Other than matching the phrase, a

more advanced security system will also be able to match

the particular speaking method and the voice with the

database of allowed personnels.

Audio recognition is also used to parse input in human-

computer interactions using sound as the method of

communication. The system searches for certain keywords

that are programmed into the system, then if the input

matches a certain pattern, the system calls an appropriate

response function.

Pattern matching can be used in audio recognition.

Although in real-life cases, the patterns are not as simple

as string that we can easily simplify audio recognition as a

problem of string matching. The scope of this paper is a

simple audio, especially the MIDI file format.

II. FUNDAMENTAL THEORIES
[1]

String matching, or pattern matching, is a searching

problem where we try to locate the first occurence of a

certain pattern (P) in a document or a part of text (T). An

example of a string matching problem:

Pattern: not

Text: nobody noticed him

There are several common algorithms that are used to

solve this problem, which are brute force algorithm (in

string-matching context, also called the Naive String-

matching
[4]

) , Knuth-Morris-Pratt Algorithm and Boyer-

Moore Algorithm.

There are several terminology that will be used in the

explanation below.

- Prefix: any substring that starts from the beginning

of the original string and ended at any but the last

character of the original string. Also includes the

empty string.

- Suffix: any substring that ends with the last

character of the original string, and starts in any

point of the original string except the beginning

character. Also includes the empty string.

A. Naive String Matching

There are three simple steps in this algorithm;

1. Pattern P is aligned to the begining of text T

2. From left to right, compare each character of P

with each character of T that aligned with it.

3. If all the characters are the same, then end of

searching because the pattern is found.

4. If there was an inequality of the characters and the

next character after the last-pattern-aligned

character is not an empty string, move the pattern

by one step. Start the searching again from step 2.

In the best case of this algorithm, where the pattern is

found right at the beginning of the text, the number of

character comparison is the length of the pattern (n), which

makes the complexity O(n). On the worst case, the

algorithm checks all character in the pattern, only to found

an incorrect character at the last character of the pattern for

every shift, making the complexity O(m*n) and (m – n + 1)

comparisons.

B. Knuth-Morris-Pratt (KMP)

With brute force, we are forced to shift just one

character, meanwhile with the Knuth-Morris-Pratt

algorithm, we can calculate a more optimized number of

shifting, making the Knuth-Morris-Pratt algorithm more

efficient than brute force in most cases. KMP itself is

quite similar to Naive String Matching, similarities

include the direction of the matching. The goal of KMP is

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

to reduce unnecessary rematches as much as

possible without missing any potential matches.

This algorithm makes use of the border function, which

counts the number the characters of the suffix that is equal

to the number of characters of the prefix for all substring

of pattern P. The border function is generally represented

by b(j), with j as the index of the last character in the

substring to be calculated.

The first step of the Knuth-Morris-Pratt algorithm is to

count the border function for each substring of the pattern.

For example, P : aabaabb, so the resulting border function

for each substring will be:

j 1 2 3 4 5 6 7

P a a b a a b b

b(j) 0 1 0 1 2 3 0

If when matched with a certain text, and the n
th

 character

of the pattern did not match the text character, then the

number of characters to shift is

X = l – b(n)

l = index of last character that was correctly matched,

counting the index of the first character as 1

 b(n) = border function of the wrongly matched

character, n as the index on the pattern.

 After shifting the pattern, the checking starts on the X
th

character of the pattern.

Picture 1. An example of KMP Algorithm

Source: Dr. Andrew Davison, Pattern Matching Presentations

On the complexity of this algorithm, firstly, KMP

requires the user to first calculate the border function for

each character on the pattern, which has the complexity of

O(m). Then, in the process of string matching, it would

need to check the mismatched character at least twice,

having the complexity of O(n). The overall complexity of

this algorithm is O(m+n).

C. Boyer-Moore (BM)

Boyer-Moore algorithm aligns the pattern to the

beginning of the text, but unlike by brute force or by KMP,

the character-checking is done from the rightmost

character to the leftmost character. Firstly, we have to list

all the alphabets from both the text and the pattern, and the

index of last occurences in the pattern of all the alphabets,

with the rightmost character as the last character.

When matching, there are three possible cases;

1. When matching, the character of the pattern did not

match the aligned character, and the last occurence

of the wrongly matched character of the text has not

yet passed.

Solution: Shift the pattern so that the character in

text are aligned with the last occurence of the

character, that is

(pattern length – index of last occurence)

An example of this case is as following;

Before shifting:

After shifting:

\

Text a b c d e f g h

Pattern - - - a a a a h a

2. The second case, that is the last occurence of the

mismatched character on the text has passed the

current checked character of the pattern.

Solution: Shift the pattern once

An example of this case is as following;

Before shifting:

Text a b c d e f g f

Pattern - - - a a a g f

After shifting:

Text a b c d e f g f

Pattern - - - - a a a g f

3. The third case, for events not covered by the

previous two cases, including an alphabet that was

matched has never appeared on the pattern.

Solution: shift the pattern minimally so that the

non-existant character in the pattern was skipped.

An example of this case is as following:

Before shifting

Text: a b c d

Pattern: a a a a

After shifting:

Text a b c d

Pattern - - - - a a a a

An example of string matching done by the Boyer-

Moore algoritihm:

Text: a b c d e f g h

Pattern

:

a a a a h a a a

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

1113

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

Picture 2. An example of KMP Algorithm

Source: Dr. Andrew Davison, Pattern Matching Presentations

The worst case running time of Boyer-Moore is O(n*m

+A), with A as the number of alphabets. This algorithm is

fast when the value of A is large, and slower when the

alphabet is small. When searching on an English text,

Boyer-Moore is significantly faster

Other than the mentioned three algorithms, there are

several commonly used algorithms for string matching, for

example the Rabin-Karp algorithm, Finite-state automaton

based search, and the Bitap algorithm.

III. CONVERTING AUDIO TO TEXT

Audio files are generally viewed in waveform or in

audio spectrums. These forms can be directly transformed

to string form by using Hough transform, which is

generally used to recognize visual patterns.
[2]

 In this

particular usage, Hough algorithm is then used to

transform the audio spectrum model to a string that can be

compared.

Hough transform is a method to calculate the value of

the frequency in an instance of the audio. In short, by using

the Hough transform, we calculate the root mean square

(RMS) of each column from the spectrogram of both the

audio sample and the audio we want to match. Of course,

the intervals of the calculations must be the same for the

sample and the pattern to match. Each product of

calculation is then arranged to become a string.

An alternative to using Hough transform is by Fast

Fourier Transform (FFT). FFT is commonly used to

process digital audio files. The Fourier analysis computes

time (or space) to frequency, and the opposite. In code, we

can use the Fast Fourier Transform to convert an array of

audio bytes toan array of Fourier Transform Coefficients

of the audio signal. These coefficients will be in complex

numbers so we would need to calculate the magnitude of

each FFT coefficient.

The FFT coefficient can be calculated to result in the

frequency content of the signal at N equally spaced

frequencies.
 [5]

 If a sample 256 points were taken to be

transformed, with sampling frequency is at 44100 Hz, then

the frequency spacing will be 44100/256 = approximately

172 Hz.

Another far simpler method is to manually list out the

frequencies of each intervals of both the audio sample and

the audio pattern. Similar to the previous method, the

intervals used when listing the frequencies of both audio

must be the same. This method would only work in simple

digital audio, because in real life, no audio is clear that we

can determine the frequency of a certain point of an audio

file. The approach that will be taken in this paper is that the

audio is processed in this method, and results in a string

which is its frequencies at certain parts of the audio..

The smaller the interval between two points from audio

that was calculated, the better. With smaller intervals, we

can detect similarity with much higher accuracy.

Generally, we use thirty frequency takes in one second.

Thus the interval is 0.033 miliseconds.

Picture 3. A simple audio file (.mid) viewed by

Audacity

Picture 4. A usual audio file (.mp3) in waveform by

Audacity
[6]

 Picture 5. A usual audio file (.mp3) in spectrum by

Audacity
[6]

IV. SOME COMMON MISSES

When collecting frequencies, keep in mind that the

frequency data should be taken in regular intervals, and

that the interval of the sample audio and the pattern audio

should be the same. But even with this, there might be

some inconsistencies between the frequencies that we had

listed, especially when we use a larger interval.

For example, in a case where an audio pattern 20

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

seconds long and the audio sample is 50 seconds long, we

gathered the data from both pattern and sample with the

interval of 1 second. If both audio files are prone to sharp

differences of frequencies in short intervals, then exact

matching would have a higher possiblity to be false. In this

case, if the pattern actually starts in the 10,50
th

 second of

the sample while we did not acquire the data of that

particular second then by exact match (eg. the 10
th

 and

11
th

 second), the comparison would prove wrong, because

the exact match was skipped.

V. STRING MATCHING IN AUDIO

After converting both sample and pattern to text, the

searching can be done by various means not limited to the

algorithms mentioned before. In the case of analyzing

MIDI files, the analysis might result in an array of arrays,

as can be seen on Picture 3, which has four parallel notes

at 3:50. The following will be a case where the analyzed

audio file is a MIDI file.

In a MIDI file, instead of listing the frequencies we

could identify each note with its MIDI number.

Picture 6. Frequency-Note-MIDI Number Relation

Source: http://www.phys.unsw.edu.au/jw/notes.html,

accessed at 17
th

 May 17 2014, 14.01PM

Other than by comparing each notes manually, there are

several Java or C# libraries that can be used to analyze and

export MIDI files.

Here is an example of the result of analyzing. By using

the open-source program midicsv
[8]

 we can convert a file

with the extension .mid into a readable CSV (Comma

Separated Value) file.

Sample CSV:
0, 0, Header, 0, 1, 480
1, 0, Start_track
1, 0, Title_t, ""
1, 0, Time_signature, 4, 2, 24, 8
1, 0, Tempo, 500000
1, 0, Tempo, 750000
1, 0, Control_c, 0, 0, 0
1, 0, Control_c, 0, 32, 0
1, 0, Program_c, 0, 94
1, 1920, Note_on_c, 0, 57, 100
1, 2400, Note_on_c, 0, 57, 0
1, 2400, Note_on_c, 0, 60, 100
1, 2880, Note_on_c, 0, 60, 0
1, 2880, Note_on_c, 0, 59, 100
1, 3360, Note_on_c, 0, 59, 0
1, 3360, Note_on_c, 0, 62, 100
1, 5184, Note_on_c, 0, 62, 0
1, 5760, Note_on_c, 0, 62, 100
1, 6192, Note_on_c, 0, 62, 0
1, 6240, Note_on_c, 0, 60, 100
1, 6672, Note_on_c, 0, 60, 0
1, 6720, Note_on_c, 0, 62, 100
1, 6936, Note_on_c, 0, 62, 0
1, 6960, Note_on_c, 0, 64, 100
1, 7176, Note_on_c, 0, 64, 0
1, 7200, Note_on_c, 0, 57, 100
1, 9120, Note_on_c, 0, 57, 0
1, 9600, Note_on_c, 0, 64, 100
1, 10032, Note_on_c, 0, 64, 0
1, 10080, Tempo, 666666
1, 10080, Note_on_c, 0, 66, 100
1, 10445, Note_on_c, 0, 66, 0
1, 10560, Tempo, 750000
1, 10560, Note_on_c, 0, 62, 100
1, 10992, Note_on_c, 0, 62, 0
1, 11040, Note_on_c, 0, 64, 100
1, 12960, Note_on_c, 0, 64, 0
1, 13440, Note_on_c, 0, 62, 100
1, 13872, Note_on_c, 0, 62, 0
1, 13920, Note_on_c, 0, 60, 100
1, 14352, Note_on_c, 0, 60, 0
1, 14400, Note_on_c, 0, 62, 100
1, 14616, Note_on_c, 0, 62, 0
1, 14640, Note_on_c, 0, 64, 100
1, 14856, Note_on_c, 0, 64, 0
1, 14880, Note_on_c, 0, 57, 100
1, 16800, Note_on_c, 0, 57, 0
1, 17280, Note_on_c, 0, 57, 100
1, 17712, Note_on_c, 0, 57, 0
1, 17760, Note_on_c, 0, 57, 100
1, 18192, Note_on_c, 0, 57, 0
1, 18240, Note_on_c, 0, 59, 100
1, 18672, Note_on_c, 0, 59, 0

http://www.phys.unsw.edu.au/jw/notes.html

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

The format of the CSV file, ignoring the headers and

footers are as following;
<Track No.>, <Time of note, in MIDI-
clock>, <Type>, <Channel>, <Note>,
<Velocity>

In this sample, we do not need to sort the data because

there are only one track of audio. One track can only have

one tone at a certain time, so in order to have more than

one node at a time, MIDI files generally have more than

one track. In cases where the MIDI file has more than one

track, the notes will be arranged according to the track, so

re-sorting by time should be done to the text.

The pattern P has the MIDI number sequence as the

following; 59, 59, 62, 62, 62, 62, 60, 60,
62, 62. After parsing and acquiring the sequence of

MIDI Numbers in a CSV file, we can directly apply any

string matching algorithm. The process of string matching

by KMP is shown as the following:

P 59 59 62 62 62 62 60 60 62 62

b(j) 0 1 0 0 0 0 0 0 0 0

57 57 60 60 59 59 62 62 62 62 60 60 62..
x
59 59 62 62 62 62 60 60 62 62

57 57 60 60 59 59 62 62 62 62 60 60 62..
 x
 59 59 62 62 62 62 60 60 62 62

.. 57 60 60 59 59 62 62 62 62 60 60 62..
 x
 59 59 62 62 62 62 60 60 62 62

.. 60 60 59 59 62 62 62 62 60 60 62 62..
 x
 59 59 62 62 62 62 60 60 62 62

.. 60 59 59 62 62 62 62 60 60 62 62 64..
 √ √ √ √ √ √ √ √ √ √
 59 59 62 62 62 62 60 60 62 62

In a regular audio, it is possible that two audio patterns

sound the same, but is not an exact match. The two audio

file might be in different keys, but the same tone compared

to the base key. For example, the note E in a C-major key

would sound the same as F# in a D-major key as both

notes has a difference of two tones from the base key,

although exact match would prove them to be different. In

other words, we can also conclude that the similarities

between sounds are more determined by how the sound is

overall rather than an exact match. So we can determine

similarities by the differences between two consecutive

notes instead of the exact notes.

By matching the differences, we can pinpoint the pattern

more accurately when the pattern is longer and has more

diversity of value. If the pattern is short though, the

matches are more likely to be a false positive. With this

method, audio samples that are pitch-atltered from the

pattern (or likewise) can be detected correctly.

VI. CONCLUSION

Simple audio, for example ones in MIDI format (.mid

extensions) can be easily compared by the string matching

approach, while for more complicated forms of audio,

there are several complicated steps that should be taken to

render the audio forms (either waveform or spectrums) as

something that can be compared. The rendering of these

audio forms in general can be done by Fast Fourier

Transform.

In the case of simple audio, like the MIDI file, we can

extract the notes from the file by using an extractor. After

extracting, depending on the complexity of the MIDI we

might have to rearrange the data, then we can compare the

rearranged sequence of notes. The comparison can be done

by any algorithms for string/pattern matching. Although

because we are comparing audio, there are several

characteristics of audio that we have to consider to make

the matching more accurate.

VII. ACKNOWLEDGMENT

The author would like to thank her parents for their

utmost support. The author would also give her gratitude

to Mr. Rinaldi Munir, and Mrs. Masayu Leylia Khodra for

the knowledge they gave in class and all their support on

the course IF2211 Algorithm Strategies (Strategi

Algoritma) for the last semester, and also for the chance to

write this paper. Last but not least, the author would also

like to thank other people who had given their help and

support in any way that lead to the finishing of this paper.

REFERENCES

[1] R. Munir, Diktat Kuliah Strategi Algoritma, Bandung: Penerbit

Sekolah Teknik Elektro dan Informatika, 2009.

[2] http://stackoverflow.com/questions/5651725/compare-two-

spectogram-to-find-the-offset-where-they-match-

algorithm?rq=1, accessed at16th May 2014, 12.30PM

1, 18720, Note_on_c, 0, 59, 100
1, 19152, Note_on_c, 0, 59, 0
1, 19200, Note_on_c, 0, 60, 100
1, 20064, Note_on_c, 0, 60, 0
1, 20160, Note_on_c, 0, 60, 100
1, 21024, Note_on_c, 0, 60, 0
1, 21600, Note_on_c, 0, 59, 100
1, 22032, Note_on_c, 0, 59, 0
1, 22080, Note_on_c, 0, 55, 100
1, 22512, Note_on_c, 0, 55, 0
1, 22560, Note_on_c, 0, 55, 100
1, 22992, Note_on_c, 0, 55, 0
1, 23040, Note_on_c, 0, 57, 100
1, 23472, Note_on_c, 0, 57, 0
1, 23520, Note_on_c, 0, 57, 100
1, 25824, Note_on_c, 0, 57, 0
1, 25824, End_track
0, 0, End_of_file

http://stackoverflow.com/questions/5651725/compare-two-spectogram-to-find-the-offset-where-they-match-algorithm?rq=1
http://stackoverflow.com/questions/5651725/compare-two-spectogram-to-find-the-offset-where-they-match-algorithm?rq=1
http://stackoverflow.com/questions/5651725/compare-two-spectogram-to-find-the-offset-where-they-match-algorithm?rq=1

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

[3] Marchand, Sylvain, Vialard, Anne, The Hough Transform for

Binaural Source Localization, 2009

[4] http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorit

hms/StringMatch/naiveStringMatch.htm, accessed at 16
th

 May

2014, 14.20PM

[5] http://stackoverflow.com/questions/604453/analyze-audio-using-

fast-fourier-transform, accessed on 16
th

 May 2014, 11.30PM

[6] http://www.youtube.com/watch?v=tQqQJ4NCt4A, accessed on

20
th

 March 2014, then converted to mp3 with bitrate 192kbps

[7] http://www.phys.unsw.edu.au/jw/notes.html, accesssed on 17
th

May 2014, 13.10PM

[8] http://www.fourmilab.ch/webtools/midicsv/, accessed on 17
th

May 2014, 23.50PM

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 18
th

 May 2014

Felicia Christie (13512039)

http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/StringMatch/naiveStringMatch.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/StringMatch/naiveStringMatch.htm
http://stackoverflow.com/questions/604453/analyze-audio-using-fast-fourier-transform
http://stackoverflow.com/questions/604453/analyze-audio-using-fast-fourier-transform
http://www.youtube.com/watch?v=tQqQJ4NCt4A
http://www.phys.unsw.edu.au/jw/notes.html
http://www.fourmilab.ch/webtools/midicsv/

