
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

ASCII Art Generator Using Brute Force Algorithm

Yusuf Rahmatullah / 13512040

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13512040@std.stei.itb.ac.id

Abstract—ASCII Art is the new kind of art that create

image from ASCII character. The ASCII character

generated randomly, but the color of character is set by pixel

of the image. In order to show the color of character, ASCII

Art Generated to .html file format. So the image can be show

in an internet browser application.

Index Terms—Brute Force, ASCII Art, Image, Picture

I. INTRODUCTION

ASCII is abbreviation for American Standard Code for

Information Interchange. ACII is a character encoding

scheme originally based on the English alphabet that

encodes 128 specified character, the numbers 0-9, the

small letters a-z, the big letters A-Z, some basic

punctuation symbols, some control codes that originated

with Teletype machines, and a blank space, into 7-bit

binary integers.[2]

ASCII art is a graphic design technique that uses

computers for presentation and consists of pictures pieced

together from printable ASCII character. ASCII art has

two form, first is the shape-oriented form and the second

is the color-oriented form.

Shape-oriented form of ASCII art created by look the

shape of the image. Example the shape of letter “H” in the

shape-oriented form ASCII art is like this :
 _ _
| | | |
| |___| |
| ___ |
| | | |
|_| |_|

In this era of high quality technology, the image that

will be generated is from picture that take by camera. So

the shape of the image depends on densitiy of every pixel

in the picture. the explaination can be shown with this

image :

Source : collerctorsquest.com

Pixel that has tiny density can be drawn by tiny density

character such as apostrophe (‘), caret (^), asterisk (*),

dot (.), comma (,), and quotation mark (“); pixel tha has

medium density can be drawn by medium density character

such as O, D, excalamtion mark (!), question mark (?),

open bracket (‘(‘) and close bracket (‘)). And pixel that

has large density can be drawn by large density character

such as M, N, W, at sign (@), number sign (#), and

ampersand (&).

Due to the the number of the possibility which character

draw the pixel, second form of ASCII art has created.

Color-oriented form ASCII art will change every pixel by

any character but the color of the character set by color of

the pixel. Color-oriented form ASCII art doesn’t

determine which character that draw every pixel of an

image but determine the color of the text.

Color-oriented form of ASCII art needs a font-face that

height and width has the same size. This form need

colorable text so every pixel of the picture can be changed

by any character. The example of color oriented form

ASCII art can be shown by this :

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

II. FUNDAMENTAL THEORY

A. Brute Force Algorithm

Brute force algorithm is kind of algorithm that has

straightforward approach to solving a problem. The brute

force algorithm is based on problem statement and

entangled concept. The brute force algorithm solve the

problem with simple algorithm, directly, and obvious

way.[1]

Generally, the brute force algorithm is “not smart”

algorithm and not effective algorithm becasue the brute

force algorithm need a lot of computation time and need

much time to solve the problem. The “force” from brute

force indicate “power” then “brain”. Sometimes the brute

force algorithm called naive algorithm.

Brute force algorithm is fit for small problem. The brute

force algorithm is used by programmer to compare his

algorithm, to check the effectiveness of his algorithm.

Brute force algorithm isn’t effective algorithm, but this

algorithm can solve any problem. it’s too hard to show a

problem that can’t be solve by brute force algorithm. In

fact, there is a problem that can be solved only by brute

force algorithm.

Example use of brute force algorithm is finding the

biggest element (or the smallest element) in an array.

Algorithm to solve for this problem is like the following

pseudo-code :
Procedure FindBiggestElement(input A : array of
integer, output max : integer)

var i : integer

max := A[1]
for i := 1 to n do
 if A[k] > max then
 max := A[k]
 endif
endfor

B. Image File Formats

Image file formats are standardized means of

organizing and storing digital images. Image file are

composed of digital data in one of these formats that can

be rasterized for use on a computer display or printer. An

image file format may store data in uncimpressed,

compressed, or vector formats. Once rasterized, an image

becomes a grid of pixels, each of which has a number of

bist to designate its color equal to the color depth of the

device displaying it.

There are two kind of image, bitmap image and vector

image. Bitmap image is kind of image that data of every

pixels in the image is stored in the file. Vector image is

kind of image that data of every pixel is generated by

formulas. These formulas are stored in the file.

Bitmap Image file size is correlated to the number of

pixels in a image and the color depth. Every pixel in a

image is stored into an matrix by its color value. The color

value is depended on image’s color depth.

Color depth is max of bit value that representate three

fundamental color, red, green, and blue (RGB). Image that

has 24-bit color depth has 8-bits for each in RGB. 8-bits

representate integer from 0—255. So 24-bit color depth

has 256*256*256 = 16,777,216 possibility color.

Now, there is image that has 32-bit color depth. It’s

contain an alpha number for every pixel. Alpha is

transparent of pixel. 255 if pixel is shown and 0 if pixel is

not shown. This color depth also called alpha, red, green,

blue (aRGB) format.

Including proprietary types, there are hundreds of

image file types. The major of bitmap image file formats is

PNG, JPEG, and GIF formats. The major of vector image

file formats is CDR (CorelDRAW), AI(Adobe Illustrator),

and SVG (Scalacle Vector Graphics).

There are compound image file format that contain

both pixel and vector data. The major of this types is PDF

(Portable Document Format) and SWF (Shockwave

Flash).

III. BRUTE FORCE ALGORITHM IMPLEMENTATION IN

ASCII ART GENERATOR

ASCII art generator that discussed in this paper is

second form ASCII art generator. The generator read the

image then convert it to simple webpage. The generator is

draw every pixel in the image by any character include

pixel’s color to coloring every character.

The generator is made by me in JAVA programming

language with command line interface (CLI). The

generator read an bitmap image file format because this

type of image file format stores it’s data in pixel format.

So the generator can convert every pixels to any character

and can coloring the character depend on it’s color in pixel

data.

The generator only use one bitmap image file format

and that is JPEG file format. The generator read one

image file that has name img.jpg then convert it to

webpage that has name img.html.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

Pixel data in img.jpg read by generator and stored in

array of integer that has size as image size. If the image

has h pixel in height and w pixel in width so the array of

integer has size h*w. Each integer (4-bytes / 32-bits)

contains 32-bit color depth format.

Generator put the pixel data to the memory use method

ImageIO.read(File) from package javax.imageio.ImageIO

in JAVA programming language. Then the stored data are

put to the array of integer.

After the generator read the pixel data, the generator

generate the ASCII character, coloring each character, and

write it into img.html using method write(String) from

package java.io.Writer in JAVA Programming Language.

The conversion of each pixel data use brute force

algorithm. The brute force algotihm is used ti converting

each pixel data to colored ASCII character because the

brute forca algorithm iterate the array of integer from the

start to the end of array.

The brute force algorithm for draw each pixel can be

shown by the following pseudo code :
var i ,j : integer
var w : integer
var h : integer
var A : array of integer
var image : PixelData
function generateRandomChar() : char

w := image.width
h := image.height
for i := 0 to h-1 do
 for j : = 1 to w do
 write(A[i*w+j] + generateRandomChar())
 endfor
 write(newline)
endfor

That algorithm has algorithm complexity T(m,n) = mn

where m is the height of the image and n is the width of

the image. So the algorithm has time complexity T(m,n) =

O(mn).

Because of the the generator using HTML webpage as

the output of ASCII art, the generator must write each

character using HTML format. For each character, it’s

writen (_char_) with

(_color_) is color format in hex-string and (_char_) is

randomly generated ASCII character.

The generator must draw each character like each pixel,

so the size of one characte width is must the same as the

other width. I use the HTML’s font tag to change the

font-face of all character. I use Lucida Console font

becuase this font has same width for all character.

To testing the generator, I use three images file that has

image file format JPEG. For each image file, it’s name is

renamed to img.jpg in order that generator can read each

file.

First image that I use is square image that size is 100 x

100 pixel. The original image is like the following picture :

And the result of generated page is like the folloring

picture :

The size of image is 1.84 KB, but the size of output

file, img.html, is 293 KB. It’s 159 times large from the

original file. it can be done because for each character is

writen witf HTML’s font tag ()

The image has homogenous color. If character that

has some color and wrote in order is written by one

HTML’s font tag, the size of output file can be decreased.

But with this concept, the worst case is when the each

color of the character (each color of pixel too) is different.

But the best case is when all color of the caracter is same.

The implementation of this concept needs change

recent algorithm. The algorithm is added with previous

color checking algorithm. If the current color is the same

as the prevoius color, so the generator just write the

generated character, but if the current color is different

from the previous color, the generator write the character

within HTML’s font tage like the recent algorithm.

The new algorithm of this concept can be shown by the

following pseudocode :
var i ,j : integer
var w : integer
var h : integer
var A : array of integer
var image : PixelData
function generateRandomChar() : char

w := image.width
h := image.height
for i := 0 to h-1 do
 for j : = 1 to w do
 if(A[i*w+j] = A[i*w+j-1]) then
 write(generateRandomChar())
 else
 write(A[i*w+j] + generateRandomChar())
 endif
 endfor

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

 write(newline)
endfor

This algorithm has algorithm complexity T1(m,n) = mn

for convertion algorithm and T2(m,n) = mn for previous

color checking algorithm. Each algorithm complexity has

same time complexity and that is T(m,n) = O(mn). So the

total of time complexity is O(mn) + O(mn) = O(mn+mn) =

O(2mn).

But this algorithm will error when i = 0 and j = 1,

because the check algorithm will access A[0*w+1-1] =

A[0] that element doesn’t exist. So in the implementation

to the JAVA programming language, I use try-catch scope

then while the program throws

ArrayIndexOutOfBoundsException the program can catch

the Exception then write the character as the previous

algorithm.

The size of new output file from first image (square

red-white colored image) become 32.4 KB. It just 17

times large then original file, and the new size is 11% from

the previous size.

The first image is take 150 ms to execute when use the

previous algorithm (algorithm without previous color

checking algorithm) and take 298 ms to execute when use

the current algorithm (algorithm wihtin previous color

checking algorithm).

The second image that I use is ganesha logo of

Bandung Institute of Technology. This image has 400

pixel as it’s width and 537 pixel as it’s height. the image

has 79.8KB as it’s size. The original second image is

shown by following image :

The result is generated with Lucida Console font and

2pt size. And the result of the second image is like the

following image :

The size of the ouput file using the previous algorithm is

6.02 MB. It takes 6.02MB/79.8KB = 77 times large than

the original file size. The generator with the previous

algorithm takes 488 ms to execute.

When the generator uses the current algorithm, the size

of output file become 1.86 MB. It just takes

1.86MB/79.8KB = 24 times large than the original file

size. the generator with this algorithm takes 961 ms to

execute.

This result is like has some noise (little black dot that

has a size as a pixel). While I take a zoom into the

generated image, the result doesn’t has a noise. The

zoomed-result is like following image :

I think that the noise is come from the character that has

small or tiny density. The noise is come from the So, I

modify the function generateRandomChar to return only

large density character and I use the at sign (@). The new

result is like following image :

The noise has cleared.

The third image that used to test the generator is my

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

picture. this image has 244 pixel as it’s width and has 282

pixel as it’s height. The image has 64.5 KB as it’s size.

the original image of the picture is like following image:

The result of the original picture is like the following

image :

This result is generated with previous setting of function

generatRandomChar() (use A-Z, a-z, 0-9, and #

character). But to clear the noise I try to only use at sign

(@) character. Then the result is :

The size of output file using first algorithm (algorithm

without previous color checking algorithm) is 1.96MB. It

takes 1.96MB/64.5KB = 31 times large than the original

image. The generator take 382 ms to execute with this

algorithm.

When the generator use the second algorithm

(algorithm within previous color checking algorithm), size

of the output file become 1.94MB. it takes

1.94MB/64.5KB = 30 times large than the original image.

The generator take 679 ms to execute with this algorithm

The first and the second algorithm has the similar

output size. it’s because the color of each pixel is different

with the previous pixel’s color.

For each picture that takes to be testing image for the

generator, the generator take under 1 second to execute

them. Because size of the original image is relatively small.

So I test the ASCII Art Generator using the big size image

file. This image has 4937 pixel as it’s width and 6469 pixel

as it’s height. This image has 3.74MB as it’s size. The

image is shown by the following image :

The image is Bandung Institute of Technology’s Map.

This image will generate by the ASCII Art generator to an

HTML webpage format file with Lucida Console font and

1pt as it’s size. This font size is needed because of the

image’s pixel size. And the function

generateRandomChar() is modify to return only at sign

(@) character.

The result of this image isn’t displayed because the size

is too large. With the first algorithm, the size of the output

file is 913MB. it takes 913MB/3.74MB = 244 times large

than the original image. The generator takes 16177 ms to

execute this algorithm.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

With the second algorithm, the size of output file is

511MB. it takes 511MB/3.74MB = 136 times large than

thw original image. The generator takes 12714 ms to

execute this algorithm.

IV. CONCLUSION

Brute force algorithm is fit to use by ASCII art

generator because the ASCII art generator stores the pixel

data in memory and brute force algorithm iterate this from

the start of array of integer to the end of array of integer.

The ASCII art generator makes smaller size of the output

file when the algorithm is included with the previous color

checking algorithm. The output file will has a small size

when the color of each pixel in the image is homogenous.

When the picture has heterogenous color, the size of the

output file with first algorithm similar with the size of

output file with second algorithm.

VII. ACKNOWLEDGMENT

Thanks to our lord Allah SWT who gives me power and

spirit to finish this paper that has title ASCII Art Generator

Using Brute Force Algorithm.

Thanks to my teacher, Mr. Rinaldi and Mrs. Masayu for

their guidance in Algorithm Strategy course in Bandung

Institute of Technology. Without their teaching and their

encouragement, this paper wouldn’t be completed.

Thanks to my parrent for their support and my friends

who had helped me in the completion of this paper.

REFERENCES

[1] Munir, Rinaldi. Algoritma Brute Force.

http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2013-2014-

genap/Algoritma%20Brute%20Force%20(2014).ppt (retireved 18

Mei 2014)

[2] R., Shirley. RFC 4949. August 2007

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 18 Mei 2014

Yusuf Rahmatullah

13512040

http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2013-2014-genap/Algoritma%20Brute%20Force%20(2014).ppt
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2013-2014-genap/Algoritma%20Brute%20Force%20(2014).ppt

