
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

DNA Sequence Matching by Using String Matching

Algorithm

Andre Susanto - 13512028

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

andresusanto@students.itb.ac.id; as@andresusanto.info

Abstract—Deoxyribonucleic acid or we know it as DNA is

a molecule that encodes the genetic instructions used in the

development and functioning of all known living organisms

and much kind of viruses. DNA is a long polymer made from

repeating units called nucleotides. Scientist have discovered

that DNA can be written as a sequence (we’ll call it later as

DNA Sequence), and this sequence can take up to 3.0 ×109

base pairs (for human genome). When we want to analyze

DNA Sequences, especially if they have a big number of

pairs, we will want an efficient, yet powerful algorithm to

make our analysis done faster. That’s why we’ll look some

string matching algorithm and find the best one to be used

for DNA Sequence Analysis.

Index Terms—DNA, DNA Sequence, String Marching,

DNA Analysis, DNA Sequence Matching.

I. INTRODUCTION

DNA which is the shorter form of Deoxyribonucleic

acid is a molecule that encodes the genetic instructions

used in the development and functioning of all known

living organisms and many viruses
[1]

. DNA encodes the

genetic instructions as a sequence which we call it the

DNA Sequence
[1]

.

Picture 1.1 – DNA Sequence

DNA Sequence only contains four kind of acid types
[1]

,

which are the Thymine (T), Adenine (A), Guanine (G)

and Cytosine (C). The Thymine is a pair with Adenine,

and the Guanine is a pair with Cytosine. In DNA

Sequence only one of the strands has the real meaning of

the whole sequence. That strand is called „sense strand‟.

The other strand is just a complementary for the first one

and called „anti sense‟
[2]

.

DNA Sequencing process requires advanced

technology and sophisticated equipment. They can cost

the scientists up to $700,000 per equipment which is

around Rp8,400,000,000 and $6,000 per run which is

around Rp72,000,000
[3]

.

Picture 1.2 – DNA Sequencer

Of course with that amount of money, scientists want

accurate, yet fast and efficient analysis process. Because

of the advancement of technology, scientists can rely

some of their works to computers. Even by using

supercomputers, scientists will require fast and efficient

algorithm to analyze their „big data‟. Picking the wrong

algorithm will cost them some time and of course will

affect the future analysis of the data.

In this paper, we will discuss about the DNA

Subsequence Matching which can be solved using String

Matching Algorithm in computer science. There are some

variant of String Matching Algorithm. Three of them are

String Matching by Brute-Force, Knuth-Morris-Pratt or

KMP Algorithm, and Boyer-Moore Algorithm.

Each variant has their own advantages and

disadvantages. Even for the simplest one, the String

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

Matching Algorithm by using Brute-Force, and the

„smart‟ variants such as KMP Algorithm and Boyer-

Moore Algorithm. We will discover which one is the best

algorithm should be applied by Geneticist (Geneticist is

scientist who expertise in heredity and DNA Science).

II. RELATED THEORIES

A. DNA Sequence

Picture 2.1 – The DNA Sequence Analysis Program

The DNA Sequence is formed by four types of acid

types which are the Thymine (T), Adenine (A), Guanine

(G) and Cytosine (C)
[2]

. The DNA Sequence contains a

pair of strands; one of them contains information about

the owner of the DNA, the other one is just a

complementary for the other one
[2]

. The strand that

contains the real information contains series of acids. This

series of acids can be decoded to some useful information,

for example if we want to find out whether the dolphins

and orcas are cousins to each other.

B. String

In computer science, string is a finite sequence of

symbols that can consist of alphabetic, numeric, or special

characters
[4]

. In some programming language, string are

represented as a primitive data type, in other programming

language string are represented as a class (or object for its

instance), and there is also some programming language

that not know string at all (they represented as array of

characters).

The formal definition of string is “Let Σ be a non-empty

finite set of symbols (alternatively called characters),

called the alphabet. No assumption is made about the

nature of the symbols. A string (or word) over Σ is any

finite sequence of symbols from Σ. For example, if Σ = {0,

1}, then 01011 is a string over Σ”
[4]

.

There are some properties of string as shown in Table

below:

Name Description

Length Assume S is a string of size m.

S = x1x2x3…..xm

Length is the size of string which

in this case is m.

Prefix Assume S is a string of size m.

S = x1x2x3…..xm

k is an integer between 1 and m,

string P is a Prefix of S if P is a

substring S[1..k-1].

Suffix Assume S is a string of size m.

S = x1x2x3…..xm

k is an integer between 1 and m,

string X is a Suffix of S if X is a

substring S[k-1..m].

Reverse Assume S is a string of size m.

S = x1x2x3…..xm

String R is a reverse of string S if

and only if R contains all of

symbols in S in reverse order.

R = xmxm-1xm-2…..x1

Table 2.1 – Some Properties of String

String with length of zero or S[0] is called null, the

symbol is .

C. Brute Force Algorithm

In computer science, brute force is a very general

problem solving technique that consists of enumerating

systematically all possible candidates of solution to find

the solution that satisfy the problem given
[5]

.

Picture 2.2 – Brute Force Factor finder in Java

For example, a brute force algorithm to find the factors

of an integer (i) will enumerate all possible solution from

1 to i and check whether i divides by the number in

iteration process is not making a reminder. Another

example of brute force algorithm to find an object in a

collection will check the collection item each by each

from beginning to the end of item.

D. String Matching

In computer science, string matching is a technique to

find whether a pattern is a match of a given string. If the

pattern given is a string, then string matching is a

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

technique to find whether the given string is a subset of

another given string (For example, string

“ABCDEFGHIJKLM” will matches with pattern “ABC”

or “DEF” or “KLM”). If the pattern given is an

expression, then string matching will process the pattern

to find whether the given string satisfy the pattern or

contain a substring that matches it (For example, string

“ABCDEF” will matches with regex “/[A-Z]+/g” or

“/\w+/g”.

Picture 2.3 – String Matching Application

String Matching is widely applied to so much program

in the world. This includes the string finder in many

variations of text editor, the regular expression (or well

known as regex), and even some of Web Analyzer uses

string matching algorithm to get the information or data.

E. Brute Force String Matching Algorithm

The Brute Force String Matching Algorithm (or also

called Naïve String Matching Algorithm) is made by using

the concept of previous theory (the Brute Force theory).

The brute force string matching algorithm can be done

with the following steps
[6]

:

1. Iterates the characters in string given from the

beginning of the string to the end of the string

minus the length of the pattern and matches it with

the beginning of the pattern.

2. If the beginning character of the pattern equals

with the current iterated character, compare the

next character of the pattern with the next character

of the string. Do this step until the end of the

pattern or stop if the current iterated character

doesn‟t match anymore.

3. If the iterated characters match with the whole

pattern, then the string matches. Continue the

iteration process to find other matches.

4. In the other hand repeat the process until the end of

the string minus the length of the pattern.

5. If until the end of string there are no any substring

matches with the pattern, then the string is not

match with the pattern.

For example we have a string “acaabc” and a pattern

“aab”. First, match the first character of the string with the

first character of the pattern. It matches; let‟s compare the

second character of the pattern with the second character

of the string. It doesn‟t match. So, compare the second

character with the first character of the pattern (because

it‟s in the iteration process). Repeat these process until we

figure that the pattern will match the string in the third

character until the fifth character. After this matches, do

the iteration process until it reaches the end of string

minus the length of the pattern.

Picture 2.4 – Example of Naïve String Matching

Picture 2.5 – Brute Force String Matching Implementation in Java

This algorithm seems very simple, but in its worst case

this algorithm will have a very high time complexity. For

example if we want to match a string “aaaaaaaaaaaaaaab”

with pattern “ab”, this algorithm will do m(n – m + 1)

comparisons which will make the time complexity become

O(mn).

In its best case, this algorithm can process the string

with n times comparisons (n is the length of the string)

which will make its time complexity become O(n). This

case occurs when the first character of the pattern doesn‟t

match the iterated character in the string except for the

matched substring. For example if we want to match a

string “We will go to jogja” with pattern “jogja”.

The average case (based from ordinary text matching)

of this algorithm take O(m+n) which is quite fast. For

Example if we want to match a string “a string searching

example is standard” with pattern “super”.

This algorithm is fast when the variance of the alphabet

of the string (and pattern) is large (this will make the

possibility of mismatch occurs in the beginning is high).

And its slower if the variance of alphabet is small (for

example binary files, image files, etc.).

F. Knuth-Morris-Pratt (KMP) Algorithm

The Knuth-Morris-Pratt (we‟ll call it KMP later), is a

string matching algorithm that iterates the pattern from the

beginning of the string to the end of string (just like the

brute force string matching algorithm), but this algorithm

shift the pattern more intelligently than brute force string

matching algorithm
[6]

.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

The KMP Algorithm fundamental idea is based from

the following question “If a mismatch occurs between the

text and pattern P at P[j], what is the most we can shift

the pattern to avoid wasteful comparisons?” and an

answer “the largest prefix of P[1 .. j-1] that is a suffix of

P[1 .. j-1]”
[6]

.

Picture 2.6 – Fundamental idea of KMP Algorithm

To use this algorithm, firstly we must process the

pattern used to get the KMP Border Function of the

pattern. The border function b(k) is defined as the size of

the largest prefix of P[1..k] that is also a suffix of P[1..k].

With j = mismatch position in P[] and k = position before

the mismatch (k = j-1). The other name of KMP Border

Function is failure function or we can call it just fail

.
Table 2.2 – Border Function in Table Representation

For example, we want to get the value of border

function for the pattern P = “abaaba”. To make the

process easier, let‟s put each of characters in P to a table

consists of Character position j (as column header) and

border function at j (as row header) as shown in Table 2.2.

Iterate from 1 to 6, in each iteration process find the

largest suffix that is also a prefix in substring P[1..j]

where j is the current iterated position. For example, in j =

5, we got the b(j) = 2 because the largest prefix of

“abaab” which is also a suffix for “baab” is “ab” and the

length of “ab” is 2, so we got b(5) = 2. Another example

of KMP Border Matching determination is presented in

the following table (Table 2.3).

Table 2.3 – Example of Determining Border Function

Now, how to use the Border Function that we get from

previous process? The usage of the Border Function will

modify the Brute Force String Matching algorithm (in the

way of shifting the pattern). When a mismatch occurs at

P[j], (i.e. P[j] != T[i]), then k = j-1 and j = b(k) + 1, which

will obtain the new j for comparison.

Picture 2.7 – KMP Example

Now, let‟s try an example. We want to check whether

string “abacaabaccabacabaabb” matches with pattern

“abacab”. First, we compute the border function of

pattern “abacab” which will resulting to “001010” border

function.

The first five comparisons between pattern and string

match each other until the sixth comparison. Because the

sixth comparison is fail, check the value of b(j-1) border

function, in this case is b(5). The value is 1, so the next

comparison (7
th

) start at j = b(5) + 1 = 2. The seventh

comparison doesn‟t match, once again look at the value of

b(j-1) which in this case is 0 which will resulting the next

comparison (8
th

) start at j = 1. Repeat the process until we

found that the pattern completely matches the string at

position 14 util 19.

The implementation of KMP can easily be done by

implementing it in two different function. The first one is

function to match the string with the pattern and the

second is function to preprocess the pattern and generate

the border function of it.

Picture 2.8 – Implementation of KMP in two functions by using Java

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

The time complexity for this algorithm can be

determined by joining time complexity for determining

the border functions (which is O(m)) and time complexity

for matching the string and pattern (which is O(n)). So the

time complexity for KMP String Matching Algorithm will

be O(m+n)
[6]

. This time complexity is quite faster

compared to the brute force string matching time

complexity.

The main advantage of this algorithm is the intelligent

shifting method that will prevent the algorithm to move

backwards in the matching string. This makes the

algorithm is a very good algorithm for processing very

large files that are read in from external devices or

through a network stream.

Although KMP Algorithm has an intelligent pattern

shifting method, it doesn‟t work so well as the size of the

alphabet increases. That because it will increases the

chance of mismatches and mismatches tend to occur early

in the pattern, but KMP is faster when the mismatches

occur later).

G. Boyer-Moore Algorithm

The Boyer-Moore string matching algorithm (we‟ll call

it as BM later) is a string matching algorithm that uses two

important techniques in order to prevent redundant

comparison
[6]

.

The first technique is the looking-glass technique. By

using this technique, BM Algorithm will look for pattern

in string by moving backwards through the pattern starting

at its end. This technique illustrated in Picture 2.9.

Picture 2.9 – Looking glass technique illustration

The second technique is the character jump technique.

By using this technique, the BM Algorithm will jump

intelligently by using the current mismatch cases

(mismatch occurs when the character in pattern P[j] is not

the same as S[i]). There are three mismatch cases, tried in

order.

The first cases occurs when P contains ‘x’ somewhere,

then try to shift P right to align the last occurrence of ‘x’

in P with T[i]. The illustration of this case is presented in

the following Picture 2.10.

Picture 2.10 – Case 1 character jump technique

The second case occurs when P contains ‘x’

somewhere, but a shift right to the last occurrence is not

possible, then shift P right by 1 character to T[i+1]. The

illustration of this case is presented in the following

Picture 2.11.

Picture 2.11 – Case 2 character jump technique

The third case occurs when neither of the first case nor

the second case occurs. If this case occurs then shift P to

align P[1] with S[i+1]. The illustration of this case is

presented in the following Picture 2.12.

Picture 2.12 – Case 3character jump technique

An example which shows us the behavior of the BM

Algorithm using the three cases to shift the pattern is

presented in the following Picture 2.13.

Picture 2.13 – Example by using these three cases

The last occurrence function in BM Algorithm is

determined by preprocess the pattern P and the alphabet

A. The last occurrence function (L()) maps all the letters

in A to integers. L(x) is defined as the largest index i such

that P[i] == x, or -1 if no such index exists.

For example, we have a pattern “abacab” and alphabet

of the string is A = {a,b,c,d}. So if we process P and find

its last occurrence function, we will get the result as

presented by Table 2.4 below.

Table 2.4 – Last occurrence determination of Pattern P

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

In the implementation process, the BM Algorithm

calculates the L() when the pattern P is read in. Usually,

the last occurrence function is stored as an array (just like

a table in previous example). The implementation of this

algorithm can easily be done by using two functions, the

first is the pattern-string matching function and the second

is the pattern preprocess function (to generate the last

occurrence values). This algorithm‟s implementation in

Java is presented by the following codes in Picture 2.14.

Picture 2.14 – Boyer-Moore implementation in Java

Another example of the BM Algorithm will show each

steps taken in comparing and shifting the pattern based on

the selected case in each condition. In this example, we

have a string T = “abacaabadcabacabaabb” and a pattern

P = “abacab”. First we compare the last character of the

pattern P with the 6
th

 character of the string. It doesn‟t

match, but the character „a‟ is in the pattern with last

occurrence of 5. So, we shift the pattern so the sixth

character is the same alignment with the fifth position of

the pattern and start comparing the pattern again. In the 4
th

comparison, character „c‟ in the pattern doesn‟t match

with character „a‟ in the string, but it‟s impossible to shift

the pattern to its last occurrence, so in this case, shift the

pattern 1 step to the right. In the 6
th

 comparison, the

iteration process meets character „d‟ in the string which is

not exist in the pattern (that resulting last occurrence of -

1), so jump the pattern by the pattern length to avoid

redundant comparison. Do the processes until it finds a

match in 8
th

 comparison until the 13
th

 comparison. This

example is illustrated with each step in the following

Picture 2.15.

Picture 2.15 – Example with steps taken

The BM Algorithm seems to be fast, but its worst case

time complexity is O(nm + A) which is a very big time

complexity to deal with
[6]

. In fact, the Boyer Moore

Algorithm is significantly faster than brute force algorithm

for searching English text. Boyer-Moore algorithm tends

to be fast when the alphabet (A) is large (the BM

algorithm will jump with a long distance when the

character in string is not exist in the pattern), and slow

when the alphabet is small. This makes the BM Algorithm

is not good for searching binary files, images, etc.

Picture 2.16 – The Boyer-Moore worst case

To show us the worst case of the Boyer Moore

Algorithm, we run the Boyer-Moore algorithm with a

string T = “aaaaaaaaa” and a pattern P = “baaaaa”. The

Boyer-Moore algorithm will do 24 comparisons to solve

this problem (the solving process is shown in Picture 2.16

above).

III. ANALYSIS

A. Theoretical Analysis

From the previous chapter, we can get some of the

algorithm best and worst cases depend on the input string.

The summary of those is listed in the following Table 3.1.

Name Best Worst

Naive Big size alphabet Small size alphabet

KMP Small size alphabet Big size alphabet

BM Big size alphabet Small size alphabet
Table 3.1 – Summary of algorithm best and worst cases

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

From the previous chapter, we can get the alphabet size

of a DNA which is 4 (because the DNA alphabet consist

of A = {A,G,T,C}). We can conclude the alphabet size of

4 is a small size alphabet if we compare it to English

alphabet that has size of 64 (a-z letters in case sensitive

form plus ten numeric values). This size of alphabet tends

to make time complexity of Brute Force Algorithm

become O(mn), the Boyer-Moore become O(nm + A) and

the KMP become O(m+n).

So, theoretically, by using the time complexity value,

comparing these algorithms with small alphabet inputs

and large string size will make the KMP much faster than

Boyer-Moore and Brute Force String Matching algorithm.

B. Practical Analysis

In this practical analysis, we will do some experiments

and simulations to determine the best algorithm to be used

in DNA Sequence Matching.

In this analysis, we use the piece of codes from the

previous chapter (theories chapter) and count each of

comparison done by the algorithm in process of solving

the given DNA Sequence. The DNA data we used are

variations of some species taken from DNA Gen Bank

(NCBI-USA). We only use the DNA of micro bacteria

which has length 100,000++ characters.

Picture 3.1 – Source DNA

For the first try, we use the Krokinobacter sp. gen and

find whether it matches with pattern

“GCAATAATTTGATATCCTATCACGATGGAAGCTA

CCTTAAAAAA”. Firstly, we set the test environment and

load all data to the simulator.

Picture 3.2 – Simulator all set and ready to go

After we load all the data to the simulator, run the

simulator and wait for the process to be done.

Picture 3.3 – String matching simulator is working on the DNA

After the process done, we can get how many

comparisons done by the algorithm in the process of

finding the pattern in the string (in this case in the DNA).

Picture 3.4 – The simulation result

 By doing the process to several DNA and Algorithms

we may conclude (or prove the theories) the best

algorithm to be used in DNA Sequence matching. The

following Table 3.2 is the result of several Bacteria‟s

DNA Matching simulation using three string matching

algorithm.

DNA KMP BM Brute-Force

Krokinoba

cter sp.

23,604,303 83,198,247 105,322,109

Pantoea

ananatis

61,215,826 200,112,431,

564

210,000,341,5

54

Drosophil

a sechellia

4,167,525 8,137,723 20,332,624

Halobacter

ium sp

9,113,351 10,281,157 40,132,553

Mycoplas

ma

pulmonis

1,820,115 2,701,458 9,412,765

Brucella

ceti

3,912,364 17,545,257 33,635,731

Escherichi

a coli

2,425,754 15,325,653 30,746,222

Table 3.2 – Comparison of three algorithms in DNA Matching

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

To make our analysis easier, we may form charts from

the data in Table 3.2. Because the first two data contains a

very high value, we‟ll separate those two into different

chart with the rest of the data. The charts formed by those

data are presented in the following Picture 3.5.

Picture 3.5 – Result of simulation in Chart View

From the comparison charts, we can look that the KMP

is always below the other algorithm (that means do less

comparison significantly rather than other two string

matching algorithm). These data also prove our

Theoretical Analysis before this sub chapter. So, we may

conclude that KMP is the best algorithm to be used in

DNA Sequence Matching process.

IV. CONCLUSION

From the previous chapter (the Analysis chapter), in the

Theoretical Analysis, we get that KMP Algorithm‟s time

complexity to analyze DNA Sequences is much smaller

than Boyer-Moore or Brute-Force String Matching

Algorithm with the same condition. By using the time

complexity, we conclude that KMP is theoretically the

best solution for DNA Sequence Matching process.

In the Practical Analysis, we have done some

experiments and simulations that also prove the previous

theoretical analysis. The result of the Practical Analysis

by using DNA Samples showed that KMP done less

comparisons process rather than two other algorithms.

So, we conclude that KMP is the best algorithm to be

used in DNA Sequence Matching rather than other two

algorithms (which are Boyer-Moore and Brute Force

Algorithm).

V. ACKNOWLEDGMENT

Andre Susanto, as the author of this paper, want to

express his deepest gratitude to Dr. Ir. Rinaldi Munir,

M.T. and Dr. Masayu Leylia Khodra, ST., MT. as the

lecturers of IF 2211 – “Strategi Algoritma”. Special

thanks to all of my family, my friends in Informatics 2012,

and other people that give any form of support to me to

finish this paper.

REFERENCES

[1] A. Berry, J. D. Watson, DNA: The Secret of Life, New York:

Arrow Books; 2004, pp. 25–44.

[2] Champoux J (2001). “DNA topoisomerases: structure, function,

and mechanism". Annu Rev Biochem 70: 369–413.

[3] Basu H, Feuerstein B, Zarling D, Shafer R, Marton L (1988).

Recognition of Z-RNA and Z-DNA determinants by polyamines in

solution: experimental and theoretical studies. J Biomol Struct

Dyn 6 (2): 299–309.

[4] Barbara H. Partee; Alice ter Meulen; Robert E. Wall (1990).

Mathematical Methods in Linguistics. Kluwer.

[5] Munir, Rinaldi, Diktat Kuliah Strategi Algoritma, 2nd ed. pp. 22–

40.

[6] Davidson, Andrew, Introduction to Pattern Matching, 2nd ed. pp.

1–50.

[7] A Gentle Introduction to Pattern. May 10, 2014 (12:00 PM).

<http://www.haskell.org/tutorial/patterns.html>

[8] The Matchematica Books. Chapter 2.3-Pattern. May 10, 2014

(12.10 PM). <http://documents.wolfram.com/mathematica/book/s

ection-2.3>

[9] Pure pattern calculus. Cambridge Press. May 11, 2014 (07.13

AM). http://journals.cambridge.org/repo_A45US65o/

STATEMENT

I hereby stated that this paper is copyrighted to me,

neither a copy from other‟s paper nor a translation of

similar paper.

Bandung, 17 May 2014

Andre Susanto

13512028

http://www.haskell.org/tutorial/patterns.html
http://documents.wolfram.com/mathematica/book/s%20ection-2.3
http://documents.wolfram.com/mathematica/book/s%20ection-2.3
http://journals.cambridge.org/repo_A45US65o/

