
Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

The Application of Backtracking and Greedy Algorithm to

Jawbreaker

Martha Monica (13510080)

Informatics Engineering

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Ganeca Street 10 Bandung 40132, Indonesia

martha.monica@students.itb.ac.id

Abstract— Jawbreaker is a simple ball game which is

played by removing the ball in the board as much as possible.

The more adjacent pieces removed, the more point will the

players got. This paper will compare the application of

backtracking and greedy algorithm in playing Jawbreaker to

find the way to achieve the best high score.

Index Terms—Jawbreaker, backtracking, greedy,

algorithm.

I. INTRODUCTION

Everybody always wants to simplify or optimize the

solution of their problem. This reason encourage many

people innovate many ways to simplify or optimize it. One

of those is the invention of many algorithms in solving

problem. The application of the algorithms is not only in

mathematical problems, but also can be used to solve some

problem people face commonly like how to find the fastest

way to reach their home, how to ship their goods in an

effective way, even to find the way to solve some game.

This paper will compare about the application of

backtracking and greedy algorithm in playing one of the

most popular game, Jawbreaker. Jawbreaker is a simple

game which is played just by removing the ball in the board

as much as possible. The more balls removed, the more

points will the player gets.

Backtracking algorithm is an algorithm which is based

on DFS algorithm for finding all solutions to some

computational problem in. This algorithm is the

improvement of brute force algorithm where we don‟t have

to check all possible solution, only the steps which are

forwarding to the solution will be processed. Because of

the improvement, the execution time will lessen. The

implementation of this algorithm is a typical form of

recursive algorithm.

Greedy algorithm is one popular method using in

optimization problems. This algorithm is so simple and

straightforward where naturally the decision which will be

chosen in one time is the step which will give the best

result that time. In this algorithm, we didn‟t care whether

the decision is the best overall solution of the problem, we

just taking the best solution for every condition.

II. JAWBREAKER

Jawbreaker is a simple game which is played just by

removing the ball in the board as much as possible. The

more balls removed, the more points will the player gets.

The game play of the Jawbreaker game can be display

with these following pictures

The goal of this game is to break down/remove the balls

with same color (minimal 3 balls) and achieve the highest

score when there are no moves left to break down the ball.

When player picks to break down one color, the balls on

the upper side will drop down until there are no spaces left

in the bottom side.

The following pictures is the visualization of the

movement of the balls

 Before After

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

The score is based on the number of adjacent balls with

the same color with the formula SCORE = N * (N-1) where

N is the number of adjacent balls with the same color.

That‟s why strategy is needed to choose the right step so

the players can form more adjacent balls with the same

color to get the higher score.

III. ALGORITHM

3.1 Greedy Algorithm

In common, greedy algorithm scheme can be define as

following steps

Initialize subset S with empty value

i. Choose a candidate with selection function from

candidate set C

ii. Remove C with the candidate chosen before

iii. Check whether the candidate will give a feasible result

(check it using feasibility function) or not. If it gives

feasible result, put the candidate to the result set, but if

it is not, remove the candidate and never consider to

process the candidate again

iv. Check whether the result set has given the complete

result (check it with solution function) or not. If it is the

complete result, stop the process, but if it is not the

result, replay again from the step (ii).

The pseudo code of Greedy algorithm can be written

as following

function SELECT (input c:candidate_set) candidate

{ return a candidate from c based upon some criteria}

function SOLUTION (input S:candidate_set) boolean

{ check whether S is the complete solution or not }

function FEASIBLE (input S:candidate_set) boolean

{ check whether S is the feasible solution or not }

function greedy (input c: candidate_set) candidate_set

{ return the solution of the optimation problems with

greedy algorithm

Input : candidate set C

Output : solution set which type is candidate set

}

DECLARATION

 x : candidate

 S : candidate_set

ALGORITHM

 S () { initialize S with empty value}

 while not (SOLUTION (S)) and (c ≠ ()) do

 x SELECT (C) {choose a candidate from C}

 c c – {x} { remove x from c }

 if FEASIBLE (S {x}} then

 S S {x}

 endif

 endwhile

{SOLUTION (S) or C = { }}

if SOLUTION(S) then

 S

else

 output(„Solution doesn‟t found‟)

endif

3.2 Backtracking algorithm

Generally, the implementation of backtracking

algorithm can be define as following steps

i. Solution is search by making a path from the root to the

leaves. The path formation using DFS method (depth

searching). The live node will be spread and named as

Expand node.

ii. Every time the live node expands, the length of the path

will be increased. If it forwarding to the result, the live

node E will not be “killed” (dead node). The dead node

will not be expanded.

iii. If the path creation ended in a dead node, the process

will be continued by expanding the other child node. If

there are no child node remains, we will backtrack to

the nearest parent node. This node will be the next live

node. Then, new path will be formed until the solution

is found.

iv. The process will stop if we have reached the complete

solution (path from the root to the leaves) or there is no

more live node to be trackbacked.

The pseudo code of backtrack algorithm can be

written as following

procedure printsolution (input x : TabelInt)

{ print the solution

 Input : x[1],x[2], .. ,x[n]

 Output : print the value of x[1], x[2], … , x[n]}

DECLARATION

 k : integer

ALGORITHM

 for k1 to n do

 output(x[k])

 endfor

procedure backtrack(input R: integer)

{ search all solution with backtracking method with

recursive scheme

Input : k, which is the index in the solution vector

component, x[k]

Output : Solution x = (x[1], x[2], … , x[n])}

ALGORITHM

foreach x[k] which hasn‟t been checked before where (x[k]

 T[k]) and B(x[1],x[2],…, x[k]) = true do

 if (x[1],x[2], …, x[k]) is path from root to leaves then

 printsolution (x)

 endif

 backtrack(k+1)

endfor

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

IV. DISCUSSION AND ANALYSIS

4.1 Greedy Algorithm

The implementation of the greedy algorithm to the

Jawbreaker game is to find the biggest number of adjacent

balls with same colors. For the example, we can visualize

the movement will be chosen when using greedy algorithm

for this following case

As the definition before, the greedy algorithm will

choose to break down the ball which will give the largest

score. In this state, we can find that the largest score will be

gotten if we break down the green balls in the right upper

side. It will give 26 x (26-1) = 650 to the score.

The following step and score will be visualize in

following pictures

When the game is finished, the implementation of greedy

algorithm will score 1498.

In the implementation of different color balls can be

represented with different integer value. The pseudo code

of the implementation greedy algorithm to solve

Jawbreaker can be written as following

type Coordinate {

 row : integer

 col : integer }

function searchSame(input r,c : integer) integer

{ to count and mark the adjacent ball with same color to

avoid duplicate checking }

DECLARATION

 temp : integer

ALGORITHM

 temp T[r,c]

 B[r,c] false

 count count + 1

 { spread to all direction}

 if (B[r-1,c]=true) and (T[r-1,c]=temp) then

 searchSame(r-1,c,T)

 endif

 if (B[r+1,c]=true) and (T[r+1,c]=temp) then

 searchSame(r+1,c,T)

 endif

 if (B[r,c-1]=true) and (T[r,c-1]=temp) then

 searchSame(r,c-1,T)

 endif

 if (B[r,c+1]=true) and (T[r,c+1]=temp) then

 searchSame(r,c+1,T)

 endif

 else {all adjacent ball color balls counted and marked}

 count

function searchMax() Coordinate

{ to find the ball position which will give biggest score,

return -1,-1 if no moves}

DECLARATION

 i,j,max : integer

 pos : Coordinate

ALGORITHM

 temp 0

 for i=1 to MaxRow do

 for j=1 to MaxCol do

 if (B[i,j]=false) then

 if (searchSame(i,j)>temp) then

 temp searchSame(i,j)

 pos (i,j)

 endif

 endif

 endfor

 endfor

 setScore(temp)

 pos

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

procedure remove (input i,j : integer)

{ will remove selected balls }

DECLARATION

 i,j,temp : integer

ALGORITHM

 temp T[r,c]

 T[r,c] -1

 { spread to all direction}

 if (T[r-1,c]=temp) then

 remove(r-1,c,T)

 endif

 if (T[r+1,c]=temp) then

 remove(r+1,c,T)

 endif

 if (T[r,c-1]=temp) then

 remove(r,c-1,T)

 endif

 if (T[r,c+1]=temp) then

 remove(r,c+1,T)

 endif

procedure dropdown ()

{ will adjust the position after remove selected balls }

DECLARATION

 i,j,k,max : integer

ALGORITHM

 i MaxCol

 while (i>0) do

 j MaxRow

 while (j>0) do

 k j

 if (T[j,i] = -1) then

 while (T[k,i] = -1) and (k>=1) do

 k k-1

 if T[k,i] ≠ -1 then

 T[j,i] T[k,i]

 T[k,i] -1

 endif

 endwhile

 j j-1

 endwhile

 i i-1

 endwhile

procedure setScore(input s: integer)

{ to set the score for the hit}

ALGORITHM

 sc s x (s-1)

MAIN PROGRAM

DECLARATION

 i,j,score,sc : integer

ALGORITHM

 input (T)

 while (searchMax() ≠ (-1,-1) do

 score score + sc

 remove(pos)

 dropdown()

 endwhile

If we use this algorithm, we can‟t ensure that it will

achieve the best score for the problem because it only

considers the best option in every step. However, the

process will be more

4.2 Backtrack Algorithm

In the backtrack algorithm, every possible step leading

to the solution. When there is no more child node to

expand, the process will be move to the parent nearest node

and expand it as live node. Contrary with the greedy

algorithm, if we use backtrack algorithm, we will get the

highest score for the problem because we count every

possible step. However, the process will take longer time

and memory size because there are so much recursive

processes used in this algorithm.

With the same case used in greedy algorithm, step and

score will be visualize in following pictures

When the process reaches this step, the best score

recorded is 1380 and there are no more moves, the process

will backtrack and move to other potential solution. It can

be visualized with this following image

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

 …

The process will continue until all possibilities have

been checked. In one of the solution, we find a higher

score achieved, even more then what we get if we use

greedy algorithm.

The pseudo code of the implementation greedy

algorithm to solve Jawbreaker can be written as following

function searchSame(input r,c : integer) integer

{ to count and mark the adjacent ball with same color to

avoid duplicate checking }

DECLARATION

 temp : integer

ALGORITHM

 temp T[r,c]

 B[r,c] false

 count count + 1

 { spread to all direction}

 if (B[r-1,c]=true) and (T[r-1,c]=temp) then

 searchSame(r-1,c,T)

 endif

 if (B[r+1,c]=true) and (T[r+1,c]=temp) then

 searchSame(r+1,c,T)

 endif

 if (B[r,c-1]=true) and (T[r,c-1]=temp) then

 searchSame(r,c-1,T)

 endif

 if (B[r,c+1]=true) and (T[r,c+1]=temp) then

 searchSame(r,c+1,T)

 endif

 else {all adjacent ball color balls counted and marked}

 count

procedure remove (input i,j : integer)

{ will remove selected balls }

DECLARATION

 i,j,temp : integer

ALGORITHM

 temp T[r,c]

 T[r,c] -1

 { spread to all direction}

 if (T[r-1,c]=temp) then

 remove(r-1,c,T)

 endif

 if (T[r+1,c]=temp) then

 remove(r+1,c,T)

 endif

 if (T[r,c-1]=temp) then

 remove(r,c-1,T)

 endif

 if (T[r,c+1]=temp) then

 remove(r,c+1,T)

 endif

procedure dropdown ()

{ will adjust the position after remove selected balls }

DECLARATION

 i,j,k,max : integer

ALGORITHM

 i MaxCol

 while (i>0) do

 j MaxRow

 while (j>0) do

 k j

 if (T[j,i] = -1) then

 while (T[k,i] = -1) and (k>=1) do

 k k-1

 if T[k,i] ≠ -1 then

 T[j,i] T[k,i]

 T[k,i] -1

 endif

 endwhile

 j j-1

 endwhile

 i i-1

 endwhile

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

function isFinish() boolean

{ to check whether it reach finish or not}

DECLARATION

 i,j : integer

ALGORITHM

 for i=1 to MaxRow do

 for j=1 to MaxCol do

 if (B[i,j]=false) then

 if (searchSame(i,j)>2) then

 false

 endif

 endif

 endfor

 endfor

 {no moves left}

 true

procedure count(input score,input T:TabInt)

{ recursive method to search all solution and pick the

biggest score }

DECLARATION

 i,j,temp : integer

 Tc : TabInt

ALGORITHM

 if not isFinish() then

Tc T {backup the table}

for i=1 to MaxRow do

 for j=1 to MaxCol do

 if (B[i,j]=false) then

 if (searchSame(i,j)>temp) then

 temp searchSame(i,j)

 score score+(temp x(temp-1))

 if (score>max) then

 max score

 remove(i,j)

 dropdown

 count (score,T)

 { backtrack }

 T Tc {put back the value}

 score score-(temp x(temp-1))

 endif

 endif

 endfor

endfor

endif

MAIN PROGRAM

DECLARATION

 max: integer

 T : TabInt

ALGORITHM

 input (T)

 count (0, T)

 output(max)

V. CONCLUSION

The implementation of greedy and backtracking

algorithm can be used to solve the Jawbreaker game. Both

algorithms give different advantages. When we use the

greedy algorithm, we can‟t always get the highest score for

the problem, but it will use less time and memory. In the

other side, backtrack algorithm will give the best solution

for the problem, but it will take more time to compute. If

we compare the result from the greedy and backtrack

algorithm, we can say that for solving the Jawbreaker

game, it is better to use backtrack algorithm, because it will

always give the best way to achieve the best score.

REFERENCES

[1] Thomas H. Cormen; Charles E. Leiserson, Ronald R. Rivest, Cliff

Stein, Introduction to Algorithms,McGraw-Hill(1990), page 389

[2] J. Bang-Jensen, G. Gutin and A. Yeo, When the greedy algorithm

fails. Discrete Optimization 1 (2004), page 121–127

[3] Donald E. Knuth, The Art of Computer Programming. Addison-

Wesley (1968)

[4] Gilles Brassard, Paul Bratley (1995). Fundamentals of

Algorithmics. Prentice-Hall.

STATEMENT

With this I state that this paper is my own writing, not

adaption, or translation from other‟s paper, and not

plagiarism.

Bandung, December 21
th

 2012

Martha Monica (13510080)

http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

