

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

String Matching in Scribblenauts Unlimited

Jordan Fernando / 13510069

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

fernandojordan.92@gmail.com

Abstract—Scribblenauts Unlimited is an emergent action

puzzle video game where you play a role as a boy who can

create or modify any object by writing words to the magic

notebook that the boy carries. This paper will discuss about

the string matching implementation in the game

Scribblenauts Unlimited.

Index Terms—About four key words or phrases in

alphabetical order, separated by commas.

1. INTRODUCTION

1.1. Scribblenauts Unlimited

Scribblenauts Unlimited is an emergent action puzzle

video game developed by 5th Cell and published by

Warner Bros to be played on Nintendo 3DS, Wii U, and

Microsoft Windows. It is the fourth title in Scribblenauts

game series.

Figure 1. Scribblenauts Unlimited Game Cover for Nintendo 3DS.

In the game you play a role as a boy, Maxwell, who

can create or modify any object by writing words to the

magic notebook that the boy carries. The goal of this

game is to find starites that appeared after doing

something good for other people. The starites will be used

on Maxwell’s sister, Lily in order to cure her from being a

stone.

The game also supports you to create your own object

with your own keyword for creation and to share your

created object. The object can be made using the parts

that is provided in the game.

Figure 2. Scribblenauts Unlimited Object Creation Screen.

1.2. String matching

String matching is a problem where you have a pattern

and a text where you want to find the place where the

pattern is found on the text.

There are many algorithms that can solve the string

matching problem such as brute force, Rabin-Karp string

search algorithm, Finite-state automaton based search,

Knuth-Morris-Pratt algorithm, Boyer-Moore string search

algorithm, and Bitap algorithm. But in this paper will only

discuss about Brute Force string search algorithm, Rabin-

Karp string search algorithm, Knuth-Morris-Pratt

algorithm, and Boyer-Moore string search algorithm.

String matching has been used in many applications

such as search engines, chat bot, DNS server, and auto-

completion.

2. THEORIES

2.1. String matching algorithms

2.1.1. Brute Force string search algorithm

In Brute Force string search algorithm, first we

align the start point of the pattern and the text. Then

we match the pattern into the text one letter by one

letter then if we find a letter that doesn’t match we

shift the pattern position 1 to the right and the start

comparing them again. If we didn’t find a letter that

doesn’t match until the last letter then we have already

found our matching strings in the text. If we always

find a letter that doesn’t match until the end of text

then the pattern is not within the text.

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

Figure 3. Brute Force string search visualization

The pseudo code of the Brute Force string search

algorithm is like this in C++:

int BruteForce (string text, string

pattern)

{

 int m = pattern.length();

 int n = text.length();

 for (int i=0;i<n-m+1;++i)

 {

 int j = 0;

 bool check = true;

 while ((check)&&(j<pattern.length()))

 {

 if (text[j]!=pattern[i+j])

 check = false;

 j++;

 }

 if (check)

 // pattern found

 return i;

 }

 return -1;

}

Brute Force algorithm has the complexity of:

- Preprocessing time: 0

- Matching time:

So, if we have a text with 1000 characters and a

pattern with 5 characters, we would have to compare

4980 times.

2.1.2. Rabin-Karp string search algorithm

Rabin-Karp algorithm is a string searching

algorithm created by Michael O. Rabin and Richard

M. Karp in 1987 that takes the advantage of hashing

to find any one of a set of pattern strings in text.

In the algorithm, we have m as the length of the

pattern and you have hs as the hash result of the

pattern, and hsub as hash result of substring of text by

the length m. We move the pattern just like the Brute

Force algorithm, but we didn’t compare the characters

first. Instead, we compare the hash result first. If the

hash result is the same, then we compare the

characters one by one just like in the Brute Force

string search algorithm. In the practice, Rabin-Karp is

frequently used for detecting plagiarism.

The pseudo code of the Rabin-Karp string search

algorithm is like this in C++:

int RabinKarp (string text, string

pattern)

{

 int m = pattern.length();

 int n = text.length();

 int hsub = hash(pattern,0,m);

 int hs = hash(text,0,m);

 for (int i=0;i<n-m+1;++i)

 {

 if (hs==hsub)

 {

 int j = 0;

 bool check = false;

 while ((check)&&(j<pattern.length()))

 {

 if (text[j]!=pattern[i+j])

 check = false;

 j++;

 }

 if (check)

 return i;

 }

 }

 return -1;

}

Rabin-Karp algorithm has the complexity of:

- Preprocessing time: Θ(m)

- Matching time: average Θ(n+m),

worst Θ((n-m+1) m)

So, if we have a text with 1000 characters and a

pattern with 5 characters, we would have compare

1005 times in average cases and 4980 times in worst

cases.

2.1.3. Knuth-Morris-Pratt algorithm

Knuth-Morris-Pratt algorithm also known as

KMP algorithm is a string searching algorithm where

we search a pattern within text and when mismatch

occurs, the pattern has the information to determine

where the next match could begin. The algorithm was

conceived in 1974 by Donald Knuth and Vaughan

Pratt, and independently by James H. Morris. The

three published it jointly in 1977.

In the algorithm, we have an array with the same

size of the pattern that contains the number of suffix

that matches the prefix. We precompute the table first

and then when the character is not matching at some

point we could shift the string pattern based on the

position – the value of the table at that index.

Here is some visualization:

We have the text “abacabaccabacdabaabb” and

the pattern “abacab”. First we need to precompute the

table. And then use the KMP string search algorithm

to find the pattern at the text.

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

Table 1. Precomputation table for KMP algorithm

k 1 2 3 4 5 6

b(k) 0 0 1 0 1 2

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

Figure 4. Visualization of KMP algorithm

The pseudo code of the KMP string search

algorithm is like this in C++:

int KMP (string text, string pattern)

{

 int m = pattern.length();

 int n = text.length();

 // creating precompute table

 int table[m];

 table[0] = 0;

 int cnd = 0;

 int i = 1;

 while (i < m)

 {

 if (pattern[i]==pattern[cnd])

 {

 table[i] = cnd + 1;

 cnd = cnd + 1;

 i++;

 }

 else if (cnd > 0)

 cnd = table [cnd -1];

 else if (cnd ==0)

 {

 table[i] = 0;

 ++i;

 }

 }

 i = 0;

 int j = 0;

 bool check = true;

 while ((check)&&(i<n))

 {

 if (pattern[j]==text[i])

 {

 i++;

 j++;

 }

 if (j==m)

 return i;

 else if ((i<n)&&(pattern[j]!=text[i]))

 {

 if (j!=0)

 j = table[j-1];

 else

 i++;

 }

 }

}

KMP algorithm has the complexity of:

- Preprocessing time: Θ(m)

- Matching time: Θ(n)

So, if we have a text with 1000 characters and a

pattern with 5 characters, we would have compare

1000 times in average.

2.1.4. Boyer-Moore string search algorithm

Boyer-Moore string search algorithm is a famous

efficient string searching algorithm in the field of

computer science. This algorithm was developed by

Robert S. Boyer and J Strother Moore in 1977. Boyer

Moore works by preprocessing the pattern first. This

algorithm uses information information gathered

during the preprocess step to skip sections of the text.

Boyer-Moore compares the pattern with the text

from the end of the pattern to the front. So, it is

checking from the behind and shifts the pattern if a

character mismatch.

In Boyer-Moore there are two shift rule, the first

is the bad character rule, by assuming the comparison

at position X is failed, then we check the character

that is being compared at the text, if that character has

appear in the pattern search before then we will only

shift by one character, if that character has not

appeared and is in the front of the pattern then we shift

the pattern so that the character is at position X, and

the last case, if the character is not in the pattern then

we shift so that the first character of the pattern is at

position X+1.

 The second shift rule is the good suffix rule, the

reason the comparisons begin at the end of the pattern

than the beginning is because of this rule. In this rule,

we find that a substring t of the text matches with the

suffix of the pattern, and a mismatch occur at the next

comparison. We need to find if exist the right-most

copy t’ of t in the pattern such that t’ is not a suffix of

the pattern and the character at the left of t’ in the

pattern differs from the character to the left of t in P. If

it exists, shift the pattern to the right so that the

substring t’ is at the same position of the substring t

before, if it doesn’t exist, shift such that the first

character of the pattern started after the position of t in

the text. This rule requires two tables to be

preprocessed.

Here is some visualization:

We have the text “a pattern matching algorithm”

and the pattern “rithm”.

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

Figure 5. Visualization of Booyer-Moore algorithm

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

The pseudo code of the Boyer-Moore string

search algorithm is like this in C++:

int BoyerMoore (string text, string

pattern)

{

 int m = pattern.length();

 int n = text.length();

 int table1[256];

 // creating the first char table

 for (int i=0;i<256;++i)

 table[i] = m;

 for (int i=0;i<m-1;++i)

 table[pattern[i]] = m -1 – i;

 // creating the second offset table

 int table2[m];

 int last_prefix = m;

 for (int i=m-1;i>=0;--i)

 {

 bool check = true;

 int j = i+1, k = 0;

 while ((check)&&(j<m))

 {

 if (pattern[j]!=pattern[k])

 check = false;

 ++j;

 ++k;

 }

 if (check)

 last_prefix = i+1;

 table2[m-1-i] = last_prefix–j+m–1;

 }

 for (int i=0;i<m-1;++i)

 {

 int slen = 0;

 for (int j=i, k=m-1;j>=0 &&

pattern[j]==pattern[k]; --j, --k)

 slen +=1;

 table2[slen] = m – 1 – j +slen;

 }

 // searching

 bool check = true;

 int i = m – 1, j = 0;

 while ((check)&&(i<text.length())

 {

 j = m -1;

 while ((check) && (pattern[j] ==

pattern[i])

 {

 if (j==0)

 // found

 check = false;

 --i;

 --j;

 }

 if (check)

 j+=max(table2[m-1-j],

table[text[i]]);

 }

 if (!check)

 return i;

}

Boyer-Moore algorithm has the complexity of:

- Preprocessing time: Θ(m + |Σ|)

- Matching time: Ω(n/m), O(n)

So, if we have a text with 1000 characters and a

pattern with 5 characters, we would have compare

1000 times or less in average.

2.2. Scribblenauts Unlimited object creation

In the Scribblenauts Unlimited game, we can

create any object we want by typing the name of the

object to the magic notebook. If we write the

unrecognized words, the game recommends some

correction. Here are the screenshots:

Figure 6. Text box to create object in Scribblenauts Unlimited

Figure 7. Correction suggestion for Scribblenauts Unlimited

The string matching in the algorithm use one of

the string matching algorithms which I don’t know.

But the implementation will be discussed in the next

chapter.

3. IMPLEMENTATION

In the game Scribblenauts unlimited, first the

program split the input into words by spaces and then

search the word from the list of available text such

that all the words is contained in the text. After

finding the exact text, it then creates the object in the

game and the object can also be manipulated further in

the game.

The implementation is just as simple as that but

it will require a powerful string matching algorithm to

make sure the game run fast.

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2012/2013

4. CONCLUSION

From this paper, we can conclude that many things

uses string matching algorithm, such as games, word

processor, search engine, and many others. Also, there are

many strings matching algorithm that differs in the

complexity and best cases.

REFERENCES

[1] http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/stmik.htm

accessed at 19 December 2012
[2] http://www.cplusplus.com/reference/

accessed at 20 December 2012

[3] http://games.kidswb.com/official-site/scribblenauts/unlimited/
accessed at 19 December 2012

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 21 December 2012

Jordan Fernando / 13510069

http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/stmik.htm
http://www.cplusplus.com/reference/
http://games.kidswb.com/official-site/scribblenauts/unlimited/

