

Multi-Robot Formation Control with Greedy and

ϵ-Greedy Action Selection Reinforcement Learning

Algorithm
Yudha Prawira Pane

#1

13209073

#
 School of Electrical Engineering and Informatics, Institut Teknologi Bandung

Ganesa 10, Bandung 40132, Indonesia
1
yudhapane@students.itb.ac.id

Abstract— Multi-robot formation control has become an

active research topic in the recent years. Several control

system policy has been successfully implemented and

tested. However, the AI approach to solve this problem is

still rarely found. In this paper, author propose a

reinforcement learning algorithm to control the formation

of robots swarm. The method propose two action selection

method that aims to maximize the agent’s control policy

and value function: greedy and ϵ-greedy.

Keywords— Multi-robot, formation control, reinforcement

learning, greedy algoritm.

I. INTRODUCTION

Formation control has become one of important

aspects for multi-robot coordination. This method aims

to alleviate the problems rising in deploying numbers of

robot such as limited energy, time-inefficiency,

unrobustness to uncertainty, among others. Concerning

real-world application, formation control proposes a

promising solutions for managing emerging issues like

autonomous security patrols, search and rescue in

hazardous environments, military applications, even

tackling traffic congestion with car platooning.

The proclivity of today’s control system research that

digresses from single agent/system to multi-

agent/system attracts researchers from around the world

in designing an optimal control policy for such problem.

The extensive efforts resulted in several solutions. Some

of notable examples are as following: [1] proposes a

fuzzy logic algorithm for enabling swarm of robots to

avoid obstacles, [2] proposes a optimized, distributed

control algorithm, meanwhile [3] uses a behavior based

control architecture in order to achieve a desired

formation.

However, there is only a few researches that

implement machine learning algorithm for solving

formation control problem. In fact, machine learning has

an advantage in managing uncertainty about the robots’

and environment’s model furthermore providing a

method to improve the robots’ performance over time.

This motivates a further investigation for integrating

learning, particularly reinforcement learning, into multi

robot formation control.

This paper propose a solution that integrates

reinforcement learning algoritm for controlling a swarm

of mobile robots. In order to achieve an optimal action-

value equation, the reinforcement learning is optimized

with greedy and ϵ-greedy algorithms for action selection.

This paper designs the method and introduces

comparison between both algorithms.

The rest of the paper is organized as follows. In

section II, the kinematics model consisting position,

orientation, and velocity of mobile robot is derived.

Section III explains the control problem that becomes

the main issue to address. Section IV focuses on the idea

of greedy algorithm. In section V, reinforcement

learning is introduced and explained in detail. Section

VI develops the greedy and ϵ-greedy algorithm for

formation control. Finally, the paper is concluded in

section VII.

II. KINEMATICS OF MOBILE ROBOT(S) AND THE

CONTROL SYSTEM DESIGNS

A. Kinematic Model of Mobile Robot

Kinematic model consists of the position, orientation

and each one’s derivative (linear and angular) of mobile

robot over time. Position means its (X,Y) coordinate

relative to the world reference frame. Orientation means

its angle with respect to X
+
 axis of world reference

frame. To get more insightful comprehension, these

properties are depicted in figure 1 below.

To appear in IF-3051 Strategy of Algorithm Technical Reports
Semester I - 2012

Figure 1. Kinematic properties of mobile robot. The position is

represented by (x,y) value or center of robot’s coordinate. The

orientation is represented by angle Ө.

In eucleidan space (X-Y coordinate system), the

position and orientation of the robot is a function of

previous position and the respected velocity. This, also

called the robot’s state, is mathematically denoted as

follows.

[

 ()

 ()

 ()
] [

 () () ()

 () () ()

 () ()
]

Where (() ()) is the robot’s position, () is

the orientation, () () is the robot’s linear and

angular velocity respectively, and is sampling time of

the state signal. In multi-robot formation, we want to

control the robots’ position and orientation to construct a

particular formation (eg. triangular, trapezoidal , etc).

B. Formation Control via Leader-Follower Approach

One of the most common approached used for

controlling multi-robot formation is leader-follower

schema. This approach assumes that only local sensor-

based information is available for each robot. In defining

the controller feedbacks, there are two types of

configuration: and controller. Both are

shown in figure 2 and 3 below.

Figure 2. The controller configuration

Figure 3. The controller configuration

The controller maintain the and value of

two mobile robots (see fig.2) in order the keep the

formation as required. Meanwhile the controller

maintains the position of three mobile robots from the

value of
 and

 (see fig. 3). In this paper, the

type controller is used.

III. PROBLEM DESCRIPTION

The problem is defined as follows. Given multiple

robots, a desired formation and an environment with

obstacles, how should the robots move through obstacles

while maintaining its formation with smallest error

possible. To make the case more concrete, the problem

chosen is maintaining a triangular formation with a

customize controller configuration. The obstacle in the

environment takes a random shape, approximating an

oval or circular shape.

To form a triangular formation, three robots is

deployed where each one has an information about the

relative position of two other robots. This paper takes

into account the communication network limitation as

well, where two robots can only send data to each other

within a defined range of length, say d1 – d2 meters. If

the two robots are separated more than d2 meters, then

the communication is lost/broken. In the other hand, if

the robots are too close (i.e. less than d1 meter) then the

signals face interference problem resulting in lost

communication as well.

The triangular formation is an equilateral triangle with

each side length equals d. The three robots have to move

together, forming the triangle, through obstacles.

Scenario of this particular task is given in figure 4.

Figure 4. Triangular formation control obstacle scenario. Initially,

the robots form an equilateral triangle with side d. When moving

through obstacle, triangle is still maintained but with side errors.

IV. GREEDY ALGORITHM

Greedy algorithm is an algorithm that is designed to

solve optimization problem. This algorithm is simple

and straightforward. The greedy algorithm maximizes

immediate value/reward without regarding future events

by forming step by step solution. Thus, greedy algorithm

only aim to achieve local optimum.

Despite its simplicity and rather-trivial characteristic,

this algorithm has proven to be a quite successful tool

for solving some optimization problems, specifically

when there is a contraint for computational resource. To

implement greedy algorithm, there are several properties

that must be defined:

1. Candidate Set

This consists of elements that forms the solution.

For instance, job set, vertices in a graph set, etc.

2. Solution Set

This consists of candidates chosen as the solutions.

In other words, solution set is a subset if candidate set.

3. Selection Function

A function for selecting the most possible

candidates for achieving optimum solution.

4. Feasibility Function

A function for checking if a chosen candidate will

result in a feasible solution i.e. not violating the

contraints.

5. Objective Function

A function for maximize or minimize the solution

value e.g. path length, income, etc.

The pseudo-code for greedy algorithm is as

follows:

function greedy (input C: candidate_space)

candidate_space

Declaration:

x: candidate

S: candidate_set

Algorithm:

S {}

while (not SOLUTION(S)) and (C {}) do

X SELECTION(C)

C C – {x}

if FEASIBLE(S U {x}) then

 S S U {x}

endif

endwhile

{SOLUTION(S) or C= {}}

if SOLUTION(S) then

 return S

else

 write (“no solution exists”)

endif

V. REINFORCEMENT LEARNING

A. Reinforcement Learning Fundamental

Reinforcement learning (RL) is a type of machine

learning algorithm that can learn the optimum policy for

an agent without training samples provided. The

algorithm is learning by interacting with the

environment. An RL agent learns from the consequences

of its action. Rather than being taught explicitly, an RL

agent selects its action on basis of its past experience

and also by new choice resulted from exploration. One

of the way to learn is by performing trial and error

learning.

Reinforcement learning consists three main

subelements/ properties which explained below.

1. Policy

A policy maps each state of an RL agent (in this

case multiple robots), s € S, and action, a € A(s), to the

probability π(s,a) of taking action a in state s. The agent

use the policy in making decision based on what it

perceives from the environment. In some cases the

policy may be a simple function or lookup table,

whereas in others it may involve extensive computation

such as a search process. The policy is the core of

reinforcement learning agent in the sense that it alone is

sufficient to determine the agent’s (robot) behavior.

2. Reward Function

The goal of reinforcement learning algorithm is

defined as a reward function, R(t). At each time step, the

agent will receive a reward value based on its

achievement. This reward could be positive (the robot’s

performance has improved) or negative (the robot

performs worse, hence punishment). The rewards which

is formed over a long period is called value.

3. Value Function

Value function is a result of reward function that

is applied for a long run. It specifies which state/action

is good or bad. Whereas rewards determine the

immediate, desired environment/robot’s state, value

represents the long-term desirability of the robot’s state.

In order to form an optimal and accurate value

function, the robot needs to know an accurate

representation of its state as well. When the

representation of the environment’s state is accurate or

complete, the state satisfies Markov property. Such

reinforcement learning task is also called Markov

Decision Process (MDP). In determining the value

function, an RL agent’s MDP must be defined first.

Assuming that the robot’s MDP is already given,

the value function equation can be derived as follows.

 () * | + *∑

 | +

Where () is the expected return when startig

in state s and following policy and denotes the

expected value given that the agent follows the policy.

We call the function the state-value function for

policy .

Finally, we come to the value function which is

mathematically defined below.

 () * | +

 *∑

 | +

We call () , value of taking action a in state

s under policy , the action-value function for policy .

Value function satisfy particular recursive algorithm:

 () * | +

 *∑

 | +

 * ∑

 | +

 ∑ ()

∑

[
 {∑

 | }]

 ∑ ()

∑

[
 ()]

B. Action Value Method

It has been stated before that long time rewards form

value function. Intuitively, to obtain a value function

that maximizes robot’s performance, the total reward

must also be maximized. However, maximum reward in

a given state transition or action performed does not

guarantee that the final value function will be maximum.

In the other hand, a low reward value does not

necessarily mean that the final value function will be

eventually low as well. This raise a question concerning

how to select action (in this case, how to move the

robots) in order to maximize the value function. How

should we select reward in each step in order to get an

optimum accumulation in the end. It turns out that there

are already several techniques to answer this action

selection problem. Popular ones are greedy, ϵ-greedy,

softmax action selection, evaluation vs instruction,

incremental, optimistic initial value, pursuit methods, etc.

Greedy and ϵ-greedy algorithm become focuses in this

paper.

VI. ROBOTS’ FORMATION STATE REPRESENTATION

AND ALGORITHM DESIGN

First, we define the state of the robots’ formation. Because

we use the controller configuration, there are total

6 state variables: (see fig 5). We can

make the representation more compact by using a 6x1

matrix below:

State ()

[

 ()
 ()
 ()
 ()
 ()
 ()]

Figure 5. All elements that form robots’s state. There are total 3

distances (forming a triangle) and 3 angle values.

Given the triangular properties (d, dmax, dmin and

60
o
 angle) , we can set the reward for the robot as a

function of its formation error. The error is defined for

several cases.

1. The distance of a pair of robots exceeds d, but not

exceeds dmax

2. The distance of a pair of robots is lower than d,

but not lower than dmin

3. The distance of a pair of robots exceeds dmax

4. The distance of a pair of robots is less than dmin

5. The angle formed by a pair of robot does not

equal 60
o
.

Those error cases results in negative reward

(punishment). Meanwhile, the robots receive positive

rewards when the difference between its errors (error in

current state minus error in previous state) is positive.

if error(t+1) – error (t) < 0
 then r(t) > 0 {robot perform better}

else if error(t+1) – error (t) > 0

then r(t) < 0 { robot perform worse}

else r(t) = 0

Action selection algorithm is responsible in selecting

actions that would maximize rewards, and hopefully

maximize value as well. The action for any given state

can consists of infinite numbers (since the movement

control is in form of parameterized function). But in

more coarse representation, the actions could fall in

several categories:

1. Move forward

2. Move diagonally

3. Move backward

4. Turn/Pivot left

5. Turn/Pivot right

A. Greedy Action Selection Algorithm

In greedy action selection, the algorithm select the

maximum reward for each state and chooses the

corresponding action. This will result in local maximum

for the reward value but does not guarantee an optimum

value function.

B. ϵ- greedy Action Selection Algorithm

In ϵ-greedy action selection algorithm, the robot will

sometimes pick randomly the reward that is not

maximum. This enables the robot to conduct exploration

in searching for the best policy. ϵ is represented as a

value ranges from 0 to 1. The highest the value, the

closer it approach a standard greedy method. The

expected results for optimum value function is depicted

in figure 6 below.

Figure 6. The comparison of greedy method and ϵ-greedy method. The

greedy method (ϵ = 1) resulted in a stagnant value function. Meanwhile the ϵ-

greedy method have better performance

VII. CONCLUSION

1. Reinforcement learning provides a promising solution

to solve multi-robot formation control problem

2. In selecting the action to maximize the value function,

an RL agent can use two methods among others:

greedy and ϵ-greedy.

3. ϵ-Greedy has proven to be better than greedy for

various reinforcement learning application, but

extensive experiment for multi robot formation control

is needed.

REFERENCES

[1] Bazoula, A. Djouadi, M.S., Maaref, H., Formation Control of

Multi-Robots via Fuzzy Logic Technique. 2008 International

Journal of Computers , Communication & Control

[2] Sutton, R.S, Barto, A.G. Reinforcement Learning: an

Introduction, 2nd ed.MIT Press.

[3] Ren, W., Sorensen, N. Distributed coordination architecture

for multi-robot formation control. Transaction of Robotics and

Autonomous Systems

[4] Balch, T., Arkin, R. Behavior based Formation Control for

Multi Robot Teams. IEEE Transcation on Robotics and

Automation

[5] Munir, R. Diktat Kuliah Strategi Algoritma. Prodi Teknik

Informatika, STEI ITB.

