
Occurrences Algorithm for String Searching Based on Brute-force Algorithm

Rio Cahya Dwiyanto

Mahasiswa
Jalan Tubagus Ismail Dalam 17E, Bandung

e-mail: if16041@students.if.itb.ac.id
kasrut_desu@yahoo.co.id

ABSTRAKSI

Naskah ini mengajukan sebuah algoritma pencarian
string sebagai salah satu perkembangan dari
algoritma pencarian brute-force. Algoritma ini
dinamakan sebagai Kejadian Algoritma (Occurrences
algorithm). Hal ini berdasarkan pada penampilan
sebelum memproses untuk pola dan untuk teks
sebelum memulai untuk mencari dari pola di dalam
teks.
Naskah ini ditulis sebagai tugas akhir dari mata kuliah
IF2251 Strategi Algoritmik dengan dosen Bapak
Rinaldi Munir.

Keyword: Pattern, substring, string searching, occurence
algorithm.

1. INTRODUCTION

Although we deal with data in a lot of forms, text
remains the main form to exchange information and take
advantage of it, thus a lot of operations have been made
on texts.

Operations on strings often involves searching for the
existence and the location of a substring within a sequence
of characters.

String searching is concerned in finding the
occurrences of a substring (called a pattern) of length m
in a text of length n. This process is an important step
towards solving many problems, including text editing,
text searching and symbol manipulation.

In order to search for a pattern within a string, an
algorithm is needed to find the pattern as well as to know
the locations where it was found in a given sequence of
characters.

There are a lot of algorithms that were created as
improvements of the brute-force algorithm. Each
algorithm tries to avoid problems that were encountered in
the existed algorithms. Still to determine which of the

algorithms is the best to use depends on the application
were the algorithm is to be used.

From the string searching algorithms is the Karp and
Rabin algorithm. It uses hashing which provides a simple
method that avoids the quadratic number of character
comparisons in most practical situations.

Assuming that the pattern length is no longer than the
memory-word size of the machine, the Shift Or algorithm
is an efficient algorithm to solve the exact string-matching
problem and it adapts easily to a wide range of
approximate string-matching problems.

The Knuth-Morris-Pratt (KMP) algorithm uses
information about the characters in of the pattern to
determine how much to move along that string after a
mismatch occurs. The Boyer-Moore algorithm works by
searching the target string from right to left, while moving
it left to right.

2. BRUTE-FORCE ALGORITHM

Brute-force algorithm, which is also called the “naïve”
is the simplest algorithm that can be used in pattern
searching. It is probably the first algorithm we might think
of for solving the pattern searching problem. It requires no
preprocessing of the pattern or the text.

The idea is that the pattern and text are compared
character by character; in the case of a mismatch, the
pattern is shifted one position to the right and comparison
is repeated, until a match is found or the end of the text is
reached.

The algorithm works with two pointers; a “text
pointer” i and a “pattern pointer” j. For all (n-m)
possibly valid shifts, pattern and text are compared; while
text and pattern characters are equal, the pattern pointer is
incremented. If a mismatch occurs, i is incremented, j is
reset to zero and the comparing process is restarted. In
case a match is found, the algorithm returns the position of
the pattern; if not, it returns not found message.

The worst case will happen if all the characters of the
pattern matches with the text segment except the last one.

Referring to the algorithm, the outer for-loop is
executed at most n-m+1 times and the inner loop is

MAKALAH IF2251 STRATEGI ALGORITMIK TAHUN 2007

executed at most m times. Thus, the running time (time
complexity) of the brute force algorithm is:

O((n-m+1)m) which is O(nm). In the worst case, when
n and m are equal, this algorithm has a quadratic running
time.

3. OCCURRENCES ALGORITHM

This algorithm finds all the occurrences of the pattern in
the text. It requires performing preprocessing of the
pattern and the text before searching. Thus, the searching
technique used in this algorithm is based on three
processes. These processes are preprocessing of the
pattern, preprocessing of the text and then depending on
the results of the preprocessing, the searching process is
performed.

Let cmax denotes the character with the highest
number of occurrences in the pattern, which means cmax
refers to the character that has the highest number of
repentances in the pattern.

* s: is the array that contains the indexes of the
segments that will be taken into consideration in
the comparisons.
* sc: is the number of elements in the s array.
The number of the elements denotes the number of

segments that are to be taken into consideration while
matching.

Preprocessing the pattern: Preprocessing the pattern
algorithm includes calculating the number of occurrences,
that is the number of repetitions, for each character in the
pattern (note that: the text in which you search in is to be
divided into segments). After that, the algorithm finds the
character that is of the highest occurrence in the pattern.
Figure 1 shows the flowchart of this process.

Preprocessing the text: The algorithm finds the
character that is of the highest occurrence in the pattern.
This process depends on the character found in the
previous process (preprocessing of the pattern process),
which has the highest number of occurrences in the
pattern. If this character is found in the segment of the
text, then calculate the number of occurrences of that
character in that segment. If the number calculated is
equivalent to the number of occurrences of that character
in the pattern, then store the segment index in an array.
Figure 2 shows the steps through which the process is
performed. At the end of the preprocessing of the text, the
array will contain the indexes of the segments that will be
considered in the comparison process.

Searching algorithm: After preprocessing the pattern
and the text, the comparison will be done. This
comparison will be between the pattern and the segments
that their indexes are stored in the array. Figure 3

illustrates the searching process. When the pattern does
not include a character repeated more than once, then the
algorithm depends on the first character in the pattern to
search for it. Searching will be done in a similar manner
as when searching for a pattern having characters repeated
more than once.

Figure 1. Preprocessing the pattern

4. IMPLEMENTATION

The main advantage of the proposed algorithm is its
simplicity. Any programming language can easily
implement it. Occurrences algorithm has improved the
way the brute-force algorithm searches for the pattern.
Preprocessing the pattern and the text is performed before
searching for the pattern in the text, which reduces the
time complexity. When the pattern does not include a
character repeated more than once, then the algorithm
depends on the first character in the pattern to perform
searching. Table 1 illustrates the differences in the time
complexity between both algorithms, depending on a
given text as an example.

5. RESULTS

The improvement that the occurrences algorithm has
offered over the brute-force algorithm, is that it

MAKALAH IF2251 STRATEGI ALGORITMIK TAHUN 2007

preprocesses the pattern and the text before performing
the searching process. The preprocessing processes give
additional information that can be used in order to
facilitate the searching process. Eventually after the
preprocessing processes have been executed, an array is
created. This array will be used to determine which
segments of the text will be compared with the pattern;
thus in the searching process the segments that will be
compared with the pattern are only those determined by
the array, without having to traverse all the segments of
the text to find the pattern.

Let cmax denotes the character with the highest
number of occurrences in the pattern, which means cmax
refers to the character that has the highest number of
repetitions in the pattern.

* s: is the array that contains the indexes of the
segments that will be taken into consideration in the
comparisons.
* sc: is the number of elements in the s array.

Table 1. The differences in the time complexity between both
algorithms, depending on a given text as an example

Description
Example
(the
pattern)

Brute-force
Time
Complexity
O((n-m
+1)*m)

Occurrences Time
Complexity
O(sc*m)

If the pattern
exists in the
text and has a
character that
is repeated
more than
once.

Room (20 - 4 + 1) * 4
17 * 4 = 68.

2 * 4 = 8.

If the pattern
exists in the
text and does
not have a
character that is
repeated more
than once.

Om 19 * 2 = 38. 4 * 2 = 8.

If the pattern is
not in the text
and has a
character
repeated more
than once.

 Moon 17 * 4 = 68. 2 * 4 = 8.

If the pattern is
not in the text
and does not
have
character that is
repeated more
than once.

Fb 19 * 2 = 38. 2 * 2 = 4.

Figure 2. Preprocessing the text

MAKALAH IF2251 STRATEGI ALGORITMIK TAHUN 2007

Figure 3. Searching process

The number of the elements denotes the number of
segments that are to be taken into consideration.

Time complexity
* If (“sc” = = 0) (which means that the pattern is not
in the text), then the time complexity would be:
O(1).
* “cmax” is found in the segment and is repeated in
the segment in a number of times that is equal to its
repentance in the pattern, that is “sc” is not equal
to zero and “s” array includes the segments’
numbers that are to be considered in comparison,
then the time complexity would be:

O((sc)*m), where sc as mentioned earlier, is the
number of elements in the s array, “sc” is either less than
or equal to n-m+1.

6. CONCLUSION

In conclusion, this study has proposed a string searching
algorithm as an improvement of the bruteforce algorithm.
Brute-force algorithm requires no preprocessing on the
pattern or on the text.

While the occurrences algorithm requires performing
preprocessing on the pattern and on the text before
searching. It depends on the repetition of a character that
is found to be repeated the most in the pattern.

Furthermore, because the quantity of available data in
the fields where string searching is used tend to double by
time, the algorithms to be used should be efficient even if
the speed and capacity of storage of computers increase
regularly. Thus, we always need to create algorithms that
can perform in a faster and more efficient manner than
those existing.

7. REFERENCES

1. Christian Charras. Introduction.
http://wwwigm.univmlv.fr/~lecroq/string/node2.html
#SECTION0020.

2. Cormen, Leiserson, Rivest, 1990. Introduction to
Algorithms. MIT Press.

3. National Institute of Standards and Technology
(NIST), 2004. String Matching.
http://www.nist.gov/dads/HTML/stringMatching.html

4. National Institute of Standards and Technology
(NIST), “Shift-Or”, 2004,
http://www.nist.gov/dads/HTML/shiftOr.html.

5. Alison Cawsey, 1998. String Searching.
http://www.cee.hw.ac.uk/~alison/ds98/node74.html

6. Christian Charras, “Brute Force algorithm.
http://www-
igm.univmlv.fr/~lecroq/string/node3.html#SECTION
0030

7. Michael T. Goodrich and Roberto Tamassia, 2002.
Algorithm Design. John Wiley and Sons, Inc.

MAKALAH IF2251 STRATEGI ALGORITMIK TAHUN 2007

	1. INTRODUCTION
	2. BRUTE-FORCE ALGORITHM
	3. OCCURRENCES ALGORITHM
	4. IMPLEMENTATION
	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

