
Dynamic Programming Algorithm To Determine How Context-Free Grammar
Can Generate A String

Samuel Simon

Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung

Alamat: Jalan Ganeca No. 10 Bandung
Email: if16032@students.if.itb.ac.id

Abstract

In formal language theory, a context-free grammar
(CFG) is a grammar in which every production rule is
of the form V w, where V is a single nonterminal
symbol and w is a string of terminals and/or
nonterminals (possibly empty). The term “context-
free” expresses the fact that nonterminals can be
rewritten without regard to the context in which they
occur. Context-free grammars play a central role in
the description and design of programming languages
and compilers. They are also used for analyzing the
syntax of natural languages. For that reason,
algorithms to determine whether a string can be
generated by a given context-free grammar and, if so,
how it can be generated are important. Every that
kind algorithm is in the class of polynomial time. The
best known such algorithm is called the Cocke-
Younger-Kasami (CYK) algorithm, and uses dynamic
programming to build a collection of derivations of
substrings from grammar symbols.

Keywords: dynamic programming, CYK, context-free
grammar.

1. INTRODUCTION

A Context-Free Grammar (CFG) is a set of recursive
rewriting rules (or production) used to generate patterns of
strings. A CFG consists of the following components:
• A set of terminal symbols, which are the characters of

the alphabet that appear in the strings generated by
the grammar.

• A set of non-terminal symbols, which are
placeholders for patterns of terminal symbols that can
be generated by the non-terminal symbols.

• A set of production, which are rules for replacing (or
rewriting) non-terminal symbols (on the left side of
the production) in a string with other non-terminal or
terminal symbols (on the right side of the production).

• A start symbol, which is a special non-terminal
symbol that appears in the initial string generated by
the grammar.

The formal definition of CFG G is a 4-turple: G = (V,
∑, R, S), where V is nonterminal, ∑ is a terminal, R is a
set of rules or productions of the grammar. S is the start
variable, used to represent the whole sentence (or
program).

To generate a string of terminal symbols from a CFG,

we:
• Begin with a string consisting of the start symbol;
• Apply one of the productions with the start symbol on

the left hand side, replacing the start symbol with the
right hand side of the production;

• Repeat the process of selecting non-terminal symbols
in the string, and replacing them with the right hand
side of some corresponding production, until all non-
terminal have been replaced by terminal symbols.

A CFG provides a simple and precise mechanism for

describing the methods by which phrases in some natural
language are built from smaller blocks, capturing the
block structure of sentences in a natural way. The block
structure aspect that CFG capture is so fundamental to
grammar that the terms syntax and grammar are often
identified with CFG rules, especially in computer science.
Formal constraints not captured by the grammar are
considered to be part of the semantic of the language.

Some examples of CFG:
• Example 1

S a
S aS
S bS

The terminals here are a and b, while the only non-
terminal is S. The language described is all nonempty
strings of as and bs that end in a. This grammar is
regular: no rule has more than one nonterminal in its
right-hand side, and each of these nonterminals is at
hte same end of the right-hand side.

Every regular grammar corresponds directly to a
nondeteministic finite automaton, so we know that
this is a regular language.

IF2251 ALGORITHM STRATEGY PAPER YEAR 2008

It is common to list all right-hand sides for the same
left-hand side on the same line, using | to seperate
them like this:

S a | aS | bS

Technically, this is the same grammar as above.

• Example 2

In a CFG, we can pair up characters the way we do
with brackets. The simplest example:
S aSb
S ab

This grammar generates the language {anbn ; n ≥ 1},
which is not regular.

The special character ε stands for the empty string.
By changing the above grammar to: S aSb | ε, we
obtain a grammar generating the language {anbn ; n ≥
0} instead. This differs only in that it contains the
empty string while the original grammar did not.

2. DYNAMIC PROGRAMMING

ALGORITHM

In mathematics and computer science, dynamic
programming is a method of solving problems exhibiting
the properties of overlapping subproblems and optimal
substructure that takes much less time than naive methods.

In general, we can solve a problem with optimal

substructure using a three-step process:
1. Break the problem into smaller problems.
2. Solve these problems optimally using this three-step

process recursively.
3. Use these optimal solutions to construct an optimal

solution for the original problem.

The subproblems are, themselves, solved by dividing

them into sub-subproblems, and so on, until we reach
some simple case that is solvable in constant time. To say
that a problem has overlapping subproblems is to say that
the same subproblems are used to solve many different
larger problems. For example, in the Fibonacci sequence,
F3 = F1 + F2 and F4 = F2 + F3, computing each number
involves computing F2. Because both F3 and F4 are needed
to compute F5,a naive approach to computing F5 may end
up computing F2 twice or more. This applies whenever
overlapping subproblems are present: a naive approach
may waste time recomputing optimal solutions to
subproblems it has already solved.

In order to avoid this, we instead save the solutions to
problems we have already solved. Then, if we need to
solve the same problem later, we can retrieve and reuse
our already-computed solution. This approach is called
memoizaton (not memorization). If we are sure we would
not need a particular solution anymore, we can throw it
away to save space. In some cases, we can even compute
the solutions to subproblems we know that we will need in
advance.

3. DYNAMIC PROGRAMMING IN CFG:

3.1. Cocke-Younger-Kasami

The best know algorithm to determine whether a string

can be generated by a given CFG and how it can be
generated is Cocke-Younger-Kasami (CYK). This
algorithm is an example of dynamic programming and
known as parsing the string.

The standard version of CYK recognizes languages

defined by CFG written in Chomsky normal form (CNF).
Since any CFG can be converted to CNF without too
much difficulty, CYK can be used to recognize any
context-free language. It is also possible to extend the
CYK algorithm to handle some CFG which are not written
in CNF; this may be done to improve performance,
although at the cost of making the algorithm harder to
understand.

The worst case asymptotic time complexity of CYK is

Θ(n3), where n is the length of the parsed string. This
makes it one of the most efficient (in those terms)
algorithms for recognizing any context-free language.
However, there are other algorithms that will perform
better for certain subsets of the context-free languages.

3.2. The Algorithm of CYK

The CYK algorithm is a bottom up algorithm and is

important theoretically, since it can be used to
constructively prove that the membership problem for
context-free languages is decidable.

The CYK algorithm for the membership problem is as

follows:
 Let the input string be a sequence of n letters a1 ... an.
 Let the grammar contain r terminal and nonterminal
symbols R1 ... Rr, and let R1 be the start symbol.

 Let P[n, n, r] be an array of booleans. Initialize all
elements of P to false.

 For each i = 1 to n
For each unit production Rj → ai, set P[i,1,j] = true.

 For each i = 2 to n (length of span)
For each j = 1 to n-i+1 (start of span)

IF2251 ALGORITHM STRATEGY PAPER YEAR 2008

For each k = 1 to i-1 (partition of span)
For each production RA RB RB C

If P[j, k, B] and P[j+k, i-k, C],
then set P[j, i, A] = true

 If P[1,n,1] is true
Then string is member of language
Else string is not member of language

It is simple to extend the above algorithm to not only

determine if a sentence is in a language, but to also
construct a parse tree, by storing parse tree nodes as
elements of the array, instead of booleans. Since the
grammars being recognized can be ambiguous, it is
necessary to store a list of nodes (unless one wishes to
only pick one possible parse tree); the end result is then a
forest of possible parse trees.

3.3 Sample Usage of CYK

Given CFG G = (V, ∑, R, S) where
 V = {S} U ∑ ∑ = { (,) }
 R: S SS
 S (S)
 S ε

G = (V, ∑, R, S) in Chomsky Normal Form (CNF)

becomes
 V = {S} U ∑ ∑ = { (,) }
 R: S SS
 S (S1
 S1 S)
 S ()

We try to detemine whether w = x1 x2 ... xn, n ≥ 2 be

generated by G?

Consider the string w = (() (()))

R: S SS Ni,i+s
 S (S1
 S1 S) = {A є V: A * xi ... xi+s}
 S ()

Picture 1. First step of CYK

Picture 2. Second step of CYK

Picture 3. Third step of CYK

 R: S SS
 S (S1
 S1 S)
 S ()

Picture 4. Last step of CYK

 R: S SS
 S (S1
 S1 S)
 S ()

IF2251 ALGORITHM STRATEGY PAPER YEAR 2008

4. CONCLUSION

Nowadays, CFG play many important roles in computer

science field. CFG is used in starting from compiler
design, natural language processing, to analyzing
parantheses in modern computer languages. For that
reason, we need powerful algorithm to compare the input
string and the grammar.

CYK is a non-directional bottom-up parser for CFG.

This algorithm is known as one of the best parser
algorithm for CFG. If used with CNF, it is very efficient
with time complexity is O(n3). The transformation into
CNF can be undone after parsing, i.e., we still have a
parser for arbitrary CFGs (as long as ε is not in language).

 REFERENCE

[1] J. K. Baker. “Trainable Grammars for Speech Recognition”.

In J. J. Wolf and D. H. Klatt, editors, Speech
Communication Papers for the 97th Meeting of the
Acoustical Society of America, pages 547-550, 1979.

[2] E. Charniak. “Statistical Language Learning”. MIT Press,
1993.

[3] Chomsky, Noam. 1956. “Three Models for The Description
of Language”. Information Theory, IEEE Transaction 2.

IF2251 ALGORITHM STRATEGY PAPER YEAR 2008

	
	Abstract
	
	In formal language theory, a context-free grammar (CFG) is a grammar in which every production rule is of the form V (w, where V is a single nonterminal symbol and w is a string of terminals and/or nonterminals (possibly empty). The term “context-free” expresses the fact that nonterminals can be rewritten without regard to the context in which they occur. Context-free grammars play a central role in the description and design of programming languages and compilers. They are also used for analyzing the syntax of natural languages. For that reason, algorithms to determine whether a string can be generated by a given context-free grammar and, if so, how it can be generated are important. Every that kind algorithm is in the class of polynomial time. The best known such algorithm is called the Cocke-Younger-Kasami (CYK) algorithm, and uses dynamic programming to build a collection of derivations of substrings from grammar symbols.
	1. INTRODUCTION
	2. DYNAMIC PROGRAMMING ALGORITHM
	3. DYNAMIC PROGRAMMING IN CFG:

