
PAPER IF2251 ALGORITHM STRATEGY TAHUN 2008

Fringe Search vs. A* for NPC movement

Andru Putra Twinanda - 13506046

Informatics Engineering

School of Electrical dan Informatics Engineering
Institut Teknologi Bandung

Jalan Ganesa 10
e-mail: ndrewh@yahoo.com

ABSTRACT

This paper presents how artificial intelligence (AI) is
used in games to solve common problems and provide
game features, specifically, non-playing character
(NPC) path finding. A* algorithm is a well-known
algorithm to solve path finding problem. Beside A*
algorithm, in this paper, Fringe Search algorithm is
introduced. It is more efficient that A* algorithm.
Experimental results show that Fringe Search runs
roughly 10-40% faster than highly-optimized A* in
many application.

Keywords: AI, NPC, path finding, A*, Fringe Search,
faster.

1. INTRODUCTION

Games today are better than at any time in the
past. Thanks to the latest powerful hardware
platforms, artists are creating near photo-realistic
environments, game designers are building finely
detailed worlds, and programmers are coding effects more
spectacular than ever before.

 Unfortunately, this leap in graphics quality and richness
of detail has not been matched by a similar increase in the
sophistication and believability of artificial intelligence
(AI).

Three common problems that computer games must
provide a solution for are non-playing character (NPC)
movement, NPC decision making, and NPC learning.
Solving these problems is the responsibility of the game
AI.

A game must provide a way for a NPC to move
throughout the game world. When the monster is on one
side of the building and the player is on the other, how
does the monster negotiate a path through the building to
the player? This needs to be done efficiently even when
the player is constantly moving throughout the building.

Just like the red, green and blue monsters in pacman
game. Those monsters have to get to the pacman, so the

player will lose. To determine which path they should
take, thay need an algorithm that will take them to the
player character, effectively and, more important,
efficiently. This is the problem of NPC movement.

Figure 1. Ms. Pacman Screenshot.

 How Could The Monsters Find Ms. Pacman?

Figure 2.

State Machine of Enemy NPC’s AI Movement

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

FRINGE SEARCH VS. A* FOR NPC MOVEMENT

2. NPC MOVEMENT

The most popular algorithm to solve a pathfinding
problem is the A* algorithm. However, A* algorithm has
some weaknesses that make the found path not really
efficient. That’s the reason a new algorithm is developed,
to find a better solution. It is Fringe Serach Algorithm.

2.1 NPC Movement with A* Algorithm

AI Search Methods are utilized to perform path-finding
in computer games. Specifically, the A* algorithm is the
most widely used search method for path negotiation in
games. Game developers like using the A* algorithm
because it is so flexible. A* does not blindly search but
rather assesses the best direction to explore even if that
means backtracking. Ultimately, the A* algorithm will
determine the shortest path between two points.

Figure 3.
A* Algorithm Spanning Tree

The A* algorithm finds a path between two nodes in a

graph. The nodes also store information that is essential
to the A* algorithm like graph position. The cost of a

node takes into account various factors like how much
energy it would take to travel a path. The job of the A*
algorithm is to find the shortest path between two nodes
with the least cost.

Typical A* algorithms have three main attributes,
fitness, goal, and heuristic or f, g, and h respectively. The
typical formula is expressed as:

f(n) = g(n) + h(n) (1)

where:

- f(n) is the score assigned to node n
- g(n) is the actual cheapest cost of arriving at n from

the start
- h(n) is the heuristic estimate of the cost to the goal

from n

The algorithm is seen below:

priorityqueue Open
list Closed

AStarSearch
 s.g = 0 // s is the start node
 s.h = GoalDistEstimate(s)
 s.f = s.g + s.h
 s.parent = null
 push s on Open
 while Open is not empty
 pop node n from Open //n has the
lowest f
 if n is a goal node
 construct path
 return success
 for each successor n' of n
 newg = n.g + cost(n,n')
 if n' is in Open or Closed,
 and n'.g < = newg
 skip
 n'.parent = n
 n'.g = newg
 n'.h = GoalDistEstimate(n')
 n'.f = n'.g + n'.h
 if n' is in Closed
 remove it from Closed
 if n' is not yet in Open
 push n' on Open
 push n onto Closed
 return failure // if no path found

Also stated before, though it’s one of the favorites, A*
algorithm has some limitations. There are situations where
A* may not perform very well, for a variety of reasons.
The more or less real-time requirements of games, plus
the limitations of the available memory and processor
time in some of them, may make it hard even for A* to
work well. A large map may require thousands of entries

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

FRINGE SEARCH VS. A* FOR NPC MOVEMENT

in the Open and Closed list, and there may not be room
enough for that. Even if there is enough memory for them,
the algorithms used for manipulating them may be
inefficient.

The quality of A*’s search depends on the quality of the
heuristic estimate, h(n). If h is very close to the true cost
of the remaining path, its efficiency will be high. On the
other hand, if it is too low, its efficiency gets very bad. In
fact, breadth-first search is an A* search, with h being
trivially zero for all nodes this certainly underestimates
the remaining path cost, and while it will find the
optimum path, it will do so slowly.

2.2 NPC Movement with Fringe Search
Algorithm

Consider Figure 4: each branch is labeled with a

path cost (1 or 2) and the heuristic function h is the
number of moves required to reach the bottom of the tree
(each move has an admissible cost of 1).

Figure 4.
Spanning Tree For Fringe Search

Fringe algorithm starts out with a threshold of
h(start)=4. Two nodes are expanded (black circles)vand
two nodes are visited (gray circles) before the algorithm
proves that no solution is possible with a cost of 4. The
two leaf nodes of the first iteration are saved, and are then
used as the starting point for the second iteration. The
second iteration has 3 leaf nodes that are used for the third
iteration. For the last iteration, Fringe Search algorithm
only visits the parts that have not yet been explored. In
this example, a total of 9 nodes are expanded and 19
nodes are visited.

Figure 5.
MazeGame Screenshot

It Already Used Fringe Algorithm as NPC Movement AI

This new algorithm is called the Fringe Search, since
the algorithm iterates over the fringe (frontier) of the
search tree. The data structure used by Fringe Search can
be thought of as two lists: one for the current iteration
(now) and one for the next iteration (later). Initially the
now list starts off with the root node and the later list is
empty. The algorithm repeatedly does the following. The
node at the head of the now list (head) is examined and
one of the following actions is taken:

1. If f(head) is greater than the threshold then head is

removed from now and placed at the end of later. In
other words, we do not need to consider head on this
iteration (we only visited head), so we save it for
consideration in the next iteration.

2. If f(head) is less or equal than the threshold then we
need to consider head’s children (expand head). Add the
children of head to the front of now. Node head is
discarded.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

FRINGE SEARCH VS. A* FOR NPC MOVEMENT

When an iteration completes and a goal has not been
found, then the search threshold is increased, the later
linked list becomes the now list, and later is set to empty.

The pseudo code for the algorithm is seen below:

Initialize:

Fringe F ß (s)
Cache C[start] ß (0, null),
C[n] ß null for n ≠ start
flimit ß h(start)
found ß false
Repeat until found = true or F empty

fmin ß ∞

Iterate over nodes n ∈ F from left
to right:

(g, parent) ß C[n]
f ← g + h(n)
If f > flimit
fmin ß min(f,fmin)
continue

If n = goal
found ß true
break

Iterate over s ∈ successors(n)
from right to left:
gs ß g +cost(n, s)
If C[s] ≠ null
(g’,parent) ß C[s]
If gs ≥ g’
continue

If F contains s
Remove s from F

Insert s into F after n
C[s] ← (gs,n)

Remove n from F
flimit ← fmin

If found = true
Construct path from parent nodes in

cache

3. COMPARING A* AND FRINGE

For the experiments two different grid movement
models are used: tiles, where the agent movement is
restricted to the four orthogonal directions (move cost =
100), and octiles, where the agent can additionally move
diagonally (move cost = 150). To better simulate game
worlds that use variable terrain costs we also experiment
with two different obstacle models: one where obstacles
are impassable, and the other where they can be traversed,
although at threefold the usual cost. As a heuristic
function we used the minimum distance as if traveling on
an obstacle-free map (e.g. Manhattan-distance for tiles).
The heuristic is both admissible and consistent.

Figure 6.
Example Map

Table 1.
Result for pathfinding in Figure 6

The A* algorithm is the de facto standard used for

pathfinding search. As can be seen from Table 1, both
algorithms expand comparable number of nodes (the only
difference is that because of its g-value ordering A∗ finds
the target a little earlier in the last iteration). Fringe
Search, on the other hand, visits many more nodes than
A*. Visiting a node in Fringe Search is an inexpensive
operation, because the algorithm iterates over the node-list
in a linear fashion. In contrast, though both A* and Fringe
search algorithm would give the same path, A* requires
far more overhead per node because of the extra work
needed to maintain a sorted order. Time-wise the Fringe

Octiles Tiles
A* Fringe A* Fringe

CPU/msec 1.7

1.3

1.2

0.8

Iterations 25.8 25.8

9.2

9.2

N-visited 583.4

2490.7

607.0

1155.3

N-visited-
last

27.7

79.5

54.5

103.8

N-
expanded

582.4

586.5

606.0

613.2

N-
expanded-
last

26.7

30.7

53.5

60.7

P-cost 5637.7

5637.7

6758.6

6758.6

P-length 46.1 46.1 68.6 68.6

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

FRINGE SEARCH VS. A* FOR NPC MOVEMENT

Search algorithm outperforms A* by a significant margin,
running 25%-40% faster on average depending on the
model.

Note that under the passable obstacle model, there is a
small difference in the path lengths found by A* and
Fringe. This is not a concern as long as the costs are the
same (a length of a path is the number of grid cells on the
path, but because under this model the cells can have
different costs it is possible that two or more different
length paths are both optimal cost-wise).

Using buckets, Fringe Search could do partial or even
full sorting, reducing or eliminating A*’s best-first search
advantage. The expanded-last row in Tables 1 and 2
shows that on the last iteration, Fringe Search expands
more nodes (as expected). However, the difference is
small, meaning that for this application domain, the
advantages of best-first search are insignificant. The ratio
of nodes visited by Fringe Search versus A* is different
for each model used. For example, in the impassable and
passable obstacles model these ratios are approximately 4
and 6, respectively. It is of interest to note that a higher
ratio does not necessarily translate into worse relative
performance for Fringe Search; in both cases the relative
performance gain is the same, or approximately 25%.

The reason is that there is a “hidden” cost in A* not
reflected in the above statistics, namely as the Open List
gets larger so will the cost of maintaining it in a sorted
order.

4. CONCLUSION

NPC needs an AI to move, in this case, to find a way to
get to the PC (Playable Characters). In other words, NPC
needs a pathfinding algorithm that will take him to the
character the fastest. A* algorithm is commonly used, but
have some weaknesses. In order to minimize the
weaknesses, a new algorithm is developed. It’s Fringe
Search Algorithm.

Large memories are ubiquitous, and the amount of
memory available will only increase. The class of single-
agent search applications that need fast memory-resident
solutions will only increase. As this paper shows, in this
case, A* is not the best choices for some applications. For
example, Fringe Search out-performs optimized versions
of A*, though they both give the same path, by significant
margins when pathfinding on grids typical of game
worlds. Compared to A*, Fringe Search avoids the
overhead of maintaining a sorted open list. Although
visiting more nodes than A* does, the low overhead per
node visit in the Fringe Search algorithm results in an
overall improved running time.

Fringe Search algorithm can be used for NPC AI
movement in high difficulty games, because the enemy
NPC can find our character in game faster than NPC using
A* algorithm.

Some data is taken unfiltered. There might be some
parts that are taken unedited from the resource.

 BIBLIOGRAPHY

[1] Yngvi Bjornsson, “Fringe Search: Beating A* at

Pathfinding on Game Maps”
[2] AISeek Ltd, “Intelligence For New Worlds”
[3] Greg Alt, “The Suffering: A Game AI Case Study”

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

